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I INTRODUCTION

This report describes a one-year research program to evaluate the ef-
fectiveness of automatic signature verification based on three-axis signature
dynamics.

There were two major aspects of the research effort:

e Data collection.

* Performance analysis to estimate the access time and Type I/Type !I
error curves for the signature verification system.

Over a four-month period, 5,220 signatures and 1,740 numeric sequences
were collected from 59 subjects. These data were collected both with the
subjects sitting at a table and standing at a counter. Twelve trained forgers
attempted 648 forgeries. The forgers were given copies of the true signers'
signatures, instructed in how the signature verification system works and what
it measures, allowed to watch video tapes of the true signers writing their-.
signatures, and allowed to practice as much as they desired over a three-week
period. These data and the data collection protocol are described in detail
in Section II.

Signature verification algorithms and associated data base analysis tech-
niques are discussed in Section III. The primary focus is on the features and
"1rubbery" correlation algorithms for signature verification, and on a dis-
criminant analysis approach to subject identification based on a handwritten
sequence of numerals.

A detailed sunmmary of the performance analysis results is given in
Section IV. Estimates for the average access time and Type I/Type 11 error
curves are presented for the features and rubbery correlation signature-
verification techniques for a variety of operating conditions. The results of
the subject identification trials based on a handwritten numeral sequence and
a discussion of the user acceptability of the system are also given in
Section IV.

A brief summary of the major results of the study and recommendations for
future work are given in Section V.

Because of the proprietary nature of some of the software programs used
in the research, copies of these programs and associated documentation will be
delivered to RADC under separate cover. A magnetic tape containing all the
data collected in a format compatible with RADC's PDP 11/70 operating under
RSX 11-M will siidlarly be provided. Documentation for the magnetic tape,
including a test program f or reading data from the tape, is given in
Appendix A of thic report.

I _ _ _ _ _ _ _ _ _ _ _ _ _



II DESCRIPTION OF THE DATA BASE AND
DATA COLLECTION PROCEDURES

A. Summary of Data Collected

The collection of true-signer data took place over a four-month period
from the beginning of June to the end of September 1980. A list of the 59
subjects who participated in the data base and the number of signatures for
each is given in Table 1. Subjects are identified by their initials. A total
of 5,220 true signatures was collected. These data will be delivered to RADC
in the form of a magnetic tape in a format compatible with the PDP 11/70 com-
puter (see Appendix A).

Table 1

NUMBER OF SIGNATURES AND NUMERAL STRINGS COLLECTED FROM
EACH SUBJECT IN THE TRUE-SIGNER DATA BASE

Number of Number of TotalSubject Signatures Numeral Strings (Signatures + Numerals)

AAF 108 36 144
AEP 84 28 112
AEW 96 32 128
ASI 102 34 136
BEP 108 36 144

BJG 114 38 152
CAU 78 26 104
CBW 84 28 112
CEP 90 30 120
C0S 90 30 120

DEP 102 34 136
DRB 90 30 120
DWV 66 22 88
ELF 78 26 104
EHW 96 32 128

FET 96 32 128
FJM 72 24 96
FLL 102 34 136
GAN 96 32 128
GEG 96 32 128
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Table 1 (Concluded)

Subject Number of Number of Total
Signatures Numeral Strings (Signatures + Numerals)

GEW 90 30 120
HEP 78 26 104
HFS 84 28 112
JCZ 66 22 88
JEE 90 30 120

JEK 96 32 128
JEP 102 34 136
JJS 114 38 152
JLP 102 34 136
JNH 84 28 112

JRL 90 30 120
KCN 84 28 112
KES 108 36 144
LAL 84 28 112
LEL 120 40 160

MAB 96 32 128
MAN 66 22 88
MER 42 14 56
MFA 84 28 112
MRC 108 36 144

OEK 102 34 136
PER 30 10 40
PES 66 22 88
PJP 120 40 160
PLH 78 26 104

RAB 102 34 136
RTK 54 18 72
RWH 102 34 136
RWR 90 30 120
SAW 108 36 144

SDJ 84 28 112
SEA 78 26 104
SEC 102 34 136
SEK 54 18 72
SRW 90 30 120

TDK 66 22 88
TPP 60 20 80
TSS 114 38 152
VKR 84 28 112

Total 5,220 1,740 6,960

6
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The data base subjects were chosen at random from a large group of
volunteers at SRI. The only constraints imposed on subject selection were to
obtain an approximately equal number of women and men, about 10 percent left-
handers (based upon estimates of the percentage of left-handers in the general
population), and a range of heights, weights, and ages. Referring to Table 1,
the left-handers in the data base are CMS, FET, PER, PES, RWH, and SEC.
Thirty of the 59 subjects were women.

In addition to the signature data, 1,740 handwritten samples of the
numeric sequence 12345 were obtained from the 59 subjects during the same data
collection period. Although not specified in the original work statement,
SRI, at the request of RADC, agreed to collect this numeral data for the
purpose of determining how well the 59 subjects could be identified* from
handwritten samples of the same set of characters. The numberic data col-
lected are also summarized in Table 1. The total number of responses obtained
(signatures and numerals) was 6,960.

In addition to the signature and numeric data, 648 forgery attempts were
obtained from 12 trained forgers. A summary of the attempted forgery data is
given in Table 2. The forgery data will also be delivered to RADC on magnetic
tape (see Appendix A). A detailed discussion of what information was made
available to the forgers and how they were trained is given in the next
section (II-B).

The total amount of data collected, including signatures, numerals, and
attempted forgeries, is on the order of 25 million bytes (25 megabytes or 200
megabits).

Finally, as a separate item, each subject in the true-signer data base
was videotaped in the process of signing three signatures. As discussed in
II-B, these tapes were used in the forger training to provide the kind of
dynamic information that can be obtained by observing the true signer write
his signature.

*"Verification" and "identification" have different goals. In verification a
person makes a claim as to his identity and the system attempts to verify
this claim by comparing his handwritten signature against the computer-stored
reference or template of that person's known signature. In identification
the person does not make an a riori claim as to his identity; rather, theSsystem attempts to determine his identity by comparins his handwritten sample
against the set of templates for all persons in the data base to find the
closest match.

7
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Table 2

SUMKARY OF FORGERY ATTEKPTS

Forger True Signer Number of Attempts

AEP RWR 18

AEP VKR 18

BEH TPP 18

DEC ASI 18
DEC JNH 18
DEC SAW 18
DEC SDJ 18

GEM ELF 18
GEM JEE 18

JER AEW 18
JER GAN 18

JFL DRB 18
JFL MRC 18
JFL RAB 18

PED GEG 18

PEM EMW 18
PEN MAB 18
PEN MFA 18
PEM SEA 18

RWH CMS 18
RWH FET 18
RWH PES 18
RWH SEC 18
RWH JEM 18
RWH BJG 18

VEW FJM 18
VEW FLL 18
VEW JRL 18
VEW LEL 18

JSO AAF 18
JSO AEP 18
JSO CEP 18
JSO DEP 18
JSO LAL 18

TPP GEW 18
TPP OEK 18

Total 648

S. 8



B. Data Collection Protocol

1. Data Collection Area

The data were collected in a partially enclosed area containing a table
and a counter (a podium-like stand). For the reasons discussed below, at each
data collection session the subject wrote signatures both while sitting down
at the table and while standing at the counter. The operator (a research
assistant) sat in front of a computer terminal immediately adjacent to the
partially enclosed area. Although the area was partially enclosed, the sub-
jects were not totally isolated from view nor acoustically shielded from the
normal computer noise. In essence, the data collection environment was es-
sentially what might be expected for a personal identification system used for
access control to a computer area.

2. True-Signer Data Base

Upon entering the data collection area, the subject was given a standard
form on which to write his signatures and numerals for the session. This form,
shown in Figure 1, was filled out ahead of time with the subject's name, the
date, and other pertinent information so that the subject was free to concen-
trate on signing his signature and writing the sequences of numerals. The
operator told the subject whether the data collection session was to begin atI the table or the counter. To avoid biases, the order of collection alternated;
that is, at one session the standing signatures would be collected first and
the next time the sitting signatures would be first. If the table was first,
the subject wrote three signatures and one set of numerals (12345) sitting at
the table, and then wrote three more signatures and another numeric sequence
while standing at the counter. When the counter was first, the process was
reversed. Thus a data collection session consisted of six signatures and two
numeric sequences. Three signatures under both sitting and standing condi-
tions were required for each data collection session, because in the perf or-
mance analysis we planned to simulate a personal identification system that
allowed up to three tries at verification.

During the first session, the subject was given brief instructions. He
was told that the system measures forces and dynamics so that any unusual
pauses in writing are likely to cause the signatures to be rejected. The
subject was instructed to use his or her standard signature. A subject who
typically used one or more signature variants (e.g., a full middle name one
time and only an initial the next) was requested to use the most common version
of the signature. The subject was instructed to inform the research assistant
of any obvious mistakes such as leaving out a middle name or initial, or other
gross signature variants. There were very few such mistakes and those that
occurred were excluded from the data base.

The signature and numeral data for each session were collected in a real-
time on-line basis. That is, whenever a subject wrote a signature it was
automatically digitized by the PDP 11/40 computer and written out on a large
disk (67 megabytes), including.a header record consisting of the subject's
initials, the date and time, a response or index number, and various other
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Date
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FIGURE 1 FORM FOR DATA COLLECTION
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pertinent information. All data forms f or all subjects and for all data col-
lection sessions, as well as hard-copy records of all program transactions,
were saved. In all, sufficient records were maintained so that whenever ques-
tions arose about the data it was possible to reconstruct exactly what happened
during the session in question.

For a signature verification system operating in the "real world," the
users must cooperate with the system or risk being denied access to a secure
area, computer account, or the like. However, no such motivation exists for
a data collection effort of the type described here. Thus there is always the
danger that subjects will grow careless after the initial novelty of the sys-
tem wears off, which can lead to unnaturally large variations in the way
signatures are written and cause an artificially low estimate of system
performance (compared to a real-world system in which users are continually
motivated by the need for access). Hence to better simulate real-world oper-
ating conditions we offered prizes for the signatures that were most consistent
over the data collection period. The intent here was to provide at least some
motivation for the subjects to perform as they would in a real-world
environment.

3. Forger Data Base

The basic procedure for collecting and storing attempted forgery data wasI essentially the same as that for the true-signer data base described in the
preceding subsection. This is to be expected, because in the real world there
is no a priori knowledge as to who is the true signer and who is the forger,
so both must be treated the same (up to the point of verification). For con-
sistency, prizes ($100, $50, and $25) were also offered for the "best"
forgeries to provide motivation far the forgers to practice and do the best
job possible.

Since the forgery data collection procedure was essentially the same as
that for the true-signer data base described above, it remains only to discuss
the training and preparation of the forgers.

One of the first problems was the selection of forgers. This was dif-
ficult because the SRI signature verification system is based on the dynamics
of a signature (i.e., the forces and motions used to create a signature) rather
than its final static image.* Thus the requirements for being a successful
forger in the SRI system are quite different than those for a "classical"
forgery, whose purpose is to duplicate the static image of a signature. For
example, in our system tracing a true signature would be one of the worst
strategies for forgery, because tracing usually results in dynamics very dif-
ferent from those of the true signer even though the final result may be
essentially identical. Our approach was, therefore, to select motivated

* people who had good manual dexterity and the capability of understanding the
basic concepts behind the verification system.

* See Appendices B and C for further details.



Rather than requiring the forgers to make a few attempts at all the dif-
ferent signatures in the true-signer data base, we decided that a more
realistic simulation of how a real forger would operate would be to have each
of our forgers concentrate on three or four signatures. They were given
several samples of these signatures and were also given a description of how
the signature verification system operates: that it measures signature
dynamics, that timing and forces are generally important, and that some of
the typical features on which the verification is based are the total time of
the signature, average force in the three orthogonal directions and the respec-
tive energies, the number of pen-ups and pen-downs, and so on. Each forger
was allowed 18 attempts to forge a particular signature. After the first nine
attempts he was shown a video tape with a close-up view of the subject signing
his signature. This was intended to- simulate the condition in which a real
forger surreptitiously observes a person writing his signature to learn as
much as possible about the dynamics of the signature. Before the actual
forgery attempts, the forgers were allowed to practice as much as they wanted
within a three-week period. In essence, the forgers were provided with all
the information that a dedicated real-world forger could be expected to obtain.

C. Assessment of Data Quality

When a signature, set of numerals, or any other response is written using
the SRI pen, the result is a set of three analog signals that are a time
record of the instantaneous three-axis force * on the pen tip during writing.I An example is shown in Figure 2. The question of data quality then has two
aspects:

e How well the three analog time series signals represent the important
characteristics of a handwritten signature.

e How accurate the digitized (discrete) representation is of the three
analog time series signals that are generated using the analog-to-
digital converter and PDP 11/40 computer.

A discussion of the SRI pen as a device for transducing the motions used
in handwriting into analog electrical signals representing the motions has
already been published and hence will not be duplicated here. See Appendix B
for details.

The data base was recorded and stored in digital (discrete) form. This
approach was taken because it was more compatible with the subsequent process-
ing and analysis, and because discrete data can be transported relatively
simply between computers (e.g., in transferring the data base from SRI's PDP
11/40 to RADC's PDP 11/70). However, since we stored only the discrete
representations of the P,X,Y analog signals, it was important to ensure

I.e., force on the pen tip in three orthogonal directions. When the pen tip
is vertical, the P-signal represents the downward force or pressure, and the
X and Y force signals represent the left/right and far/near forces, respec-
tively, in the plane of the writing surface.

* 12
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4ai ORIGINAL SIGNATURE

.SIGNAL VV V
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(b1 THE THREE-DIMENSIONAL SIGNALS GENERATED BY THE SRI PEN
DURING THE WRITING OF THE ABOVE SIGNATURE

FIGURE 2 P, X, AND Y FORCE SIGNALS FOR A TYPICAL SIGNATURE

the accuracy of the discrete representations. The frequency response of the
pen signals rolls off sharply above 25 Hz, because of filtering in the elec-
tronics, and it is reasonable to approximate the pen response as being
frequency-bandlimited with a maximum frequency of about 25 Hz. The sampling
theorem of communication theory states that for a bandlimited signal, sampling
at least twice during the period of its highest frequency component is suf-
ficient to completely characterize the signal in the sense that the original
analog signal can be exactly reconstructed from the discrete samples. The
minimum sampling rate for which this is possible is called the Nyquist rate,
which corresponds to sampling exactly twice during each period of the highest
frequency component. For the pen system the Nyquist rate - 1/2(25 Hz) - 0.02 s
or 50 samples/s for each of the three analog signals. However, for safety we
sampled at twice this rate, or 100 samples/s for each signal, for a total of
300 samples/s. This ensures that no loss of information occurs in the process
of digitization and storage of the data in digital form.

13
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Duaring the data collection period, quality checks on the data vere made
at regular intervals.' These checks consisted of printing out the data for
selected signatures and displaying the P,X,Y signals in graphic form on a
Tektronix display scope. As discussed earlier, a hard-copy record of all the
data collection sessions was also maintained.

During the data collection period, only one software problem occurred.
Under very unusual circumstances a very narrow spike was artificially intro-
duced into the data. This problem, which was traced to a software error in
the data collection program, was corrected at an early stage and affected only
a very small amount of data. A computer program was written to search through
all the data records to identify which were affected by this error. These
responses were excluded from the analysis. There were occasions, also very
infrequent, when the pen ran out of ink and had to be refilled, and on some
such occasions a bad signature resulted. The number of bad responses from
all sources is summaarized in Table 3 for signatures and numerals.

The forgery data base collection began well after the true-signer data
base, by which time these problems had been resolved, and hence all the
forgery data was of good quality.

To sumarize, of the total of 7,608 true signatures, numerals, and
attempted forgeries, 47, or 0.6 percent, were deleted. The rest of the data
was of high quality and was used in the subsequent analysis.

Table 3

BAD SIGNATURE AND NUMERIC RESPONSES

Response Numbers
Subject Bad Signatures Bad Numerals

AAF
AEP
AEW
ASI 8, 11
REP

BJG 4
CAU 34
CEW
CEP 33
CI4S 28, 60, 89

DID 40
n3WV
ELF 70, 16
ENW 3

14



Table 3 (Continued)

Response Numbers
Subject Bad Signatures Bad Numerals

FET 8
FJM 49
FLL 5
GAN
GEC

GEW 55
HEP 76
HFS
Jcz
JEE

JEM 1
JEP 32, 36
JJs 11
MLP
JNH 6 8

JRL
KCN 12
KES
LAL
LEL 19, 29 3

KAB
MAN 16, 26
MER 5
MFA 62
MRC 23

OEK
PER 3
PES
PJP 7, 26, 27, 39, 40
PLH 2

RAB 44
RTK
RWH
RWR
SAW

SDJ 9
SEA 46
SEC
SEM
SRW 2, 5

i
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Table 3 (Concluded)

Response Numbers
Subject Bad Signatures Bad Numerals

TDK
TPP
TSS
VKR 12

16



III DATA BASE ANALYSIS PROCEDURES

The purpose of the data base analysis is twofold:

e To optimize the performance of the signature verification system.

e To provide estimates of the performance of the optimized systems,
including Type I/Type II error curves* and access time.

In this section we summarize the basic analysis procedures applied to the data
base described in Section II. The results of the performance evaluation are
reported in the next section (Section IV).

A. Features Analysis (for Signature and Forgery Data)

In this subsection we discuss the analysis procedures applicable to the
features approach to signature verification. For background we begin with a
description of how that approach actually works.

1. Features Approach to Signature Verification

The features approach to signature verification is summarized in Fig-
ure 3. When a person's identity is to be verified (e.g., to gain access to
a secure area) the procedure is to identify himself to the system and write
his signature. As shown in the figure, the pen transduces the forces and
motions used in writing the signature into a set of three analog signals that
are a time record of the instantaneous force on the tip of the pen in the
three orthogonal directions. The P-signal is the downward force or pressure,
and the X and Y signals are the left/right and far/near forces, respectively,
in the plane of the paper. These analog signals are input to an analog-to-
digital converter and digitized at the rate of 100 samples per second per
channel. The digitized representations of the P,X,Y analog signals are then
processed by a computer to extract a set of descriptors, called features, of
the three signals. These features include various timing parameters such as
the total time of the signature, the average force in each of the three
directions (P, X, and Y) and the corresponding energies, the number of pen-
ups and pen-downs, and so on. A complete listing of the features considered
is given in III-A-2. The set of features (sl, 82, . sn) extracted from the
discrete representations of the P, X, and Y signals form the feature vector
when arranged in column order, as shown in Figure 3. The computer then calls
up the computer-stored template or reference feature vector corresponding to
the person whom the writer claims to be. The template vector is an average

*A Type I error occurs when a true signature is classified as a forgery (a

false rejection). A Type II error occurs when a forgery is classified as a
true signature (impostor accepted).

17
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feature vector constructed from a set of known true signatures. Associated
with the template vector is a vector of standard deviations for the features
(see Figure 3), which provides a measure of how variable the true signer is
from qignature to signature for each feature. A measure of closeness between
the feature vector and the template vector is then computed. If the feature
vector corresponding to the signature in question is "close enough" to the
template vector, the signature is judged to be a true signature and the per-
son's identity is verified. If the feature vector is not close enough, the
signature in question is judged an attempted forgery. In a practical signa-
ture verification system, the writer will often be allowed more than one
chance to be verified; that is, if the first signature does not pass the above
tests, he or she will be allowed to write one or two more signatures to be
tested for verification.

A quantitative description of the computed "measure of closeness" between
the feature vector and the template vector is given in Appendix C. In essence,
the measure of closeness is a Euclidean distance metric, normalized or
weighted by the template standard deviation vector. When the calculated dis-
tance metric is less than or equal to a pre-specified threshold, the signature
is judged to be true; if above the threshold, it is judged to be an attempted
forgery.

In the features technique, as we have seen, the forces and motions in-
volved in creating a signature are finally represented as a feature vector.
Clearly, if the features approach to signature verification is to be success-
ful, the feature vector must contain as much information as possible that is

useful for discriminating between true signatures and forgeries. The basic
purpose for collecting a data base of true signatures and attempted forgeries
is to provide data that can be analyzed to select_ a set of features (which
constitute the feature vector) that provide maximum discriminating power
between the true signatures and the attempted forgeries. The process of
optimizing the features technique, then, consists of selecting the "best" set
of features and an appropriate threshold for the distance metric measure of
closeness (see Appendix C for details).

The problem of selecting a "best" set of features has two aspects, which
we call feature extraction and feature selection. In general, there is no way
to make an a priori determination of what the best features will be for a
particular situation,.so what must be done is to extract a relatively large
number of features that are expected to be useful for discriminating between
true signatures and attempted forgeries.' This generally results in a great
deal of redundancy. The objective of feature selection is to obtain a
reduced set of features that contains essentially all the discriminating
power of the original features set.* The features initially extracted for

*Under certain assumptions concerning the probability distributions of the

feature set, it can be shown that the process of feature selection cannot
reduce the Type I/Type II error rates. However, as a practical matter, an
improvement in error-rate performance often results from feature selection.

* See R. 0. Duda and P. E, Harj, Pattern Classification and Scene Analysis
(New York: Wiley, 1973) p. 66.
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the signature verification problem are described in III-A-2. The feature
selection process is discussed further in III-A-3.

2. Feature Extraction

Based on our knowledge of the characteristics of the P, X, and Y signals
derived from the pen and our experience with previous true-signature and
forgery data bases, a set of 44 features was selected as the starting point
in the current data base analysis. These features are described in Figure 4.

FEATURE

NUMBER FEATURE

X Y P
1 11 21 SCALED MEAN
2 12 22 STANDARD DEVIATION
3 13 23 MAXIMUM
4 14 241 MAXIMUM

5 15 25 AVERAGE ABSOLUTE
6 16 26 AVERAGE POSITIVE

7 17 J27 NUMBER OF
POSITIVE SAMPLES

8 18 28 AVERAGE NEGATIVE

9 19 29 NUMBER OF
NEGATIVE SAMPLES

10 20 30 NUMBER OF
O-CROSSINGS

31 32 33 MAXIMUM MINUS
SCALED MEAN

34 35 36 MAXIMUM
MINUS MINIMUM

37 38 39 SCALED MEAN
MINUS MINIMUM

FEATURE
NUMBER FEATURE

40 TOTAL TIME
41 NUMBER OF

SEGMENTS -1

42 TIME UP
43 NUMBER OF SEGMENTS
44 TIME DOWN

FIGURE 4 THE 44 ORIGINAL FEATURES
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3. Feature Selection

The objective of feature selection is the following: Given the rela-
tively large set of 44 features described in the preceding subsection, find a
subset that yields the best performance for signature verification. The pro-
cess of feature selection yields two positive benefits:

* It reduces the Type I/Type II error rate.

* It improves computational efficiency by excluding or combining fea-
tures that contain redundant information about the signature.

Before presenting the results of our analysis, we will give a brief descrip-
tion of general feature selection concepts.

In general, all feature selection techniques follow the same procedure.
The starting point is a large set of features that the analyst believes to be
useful for discriminating between samples (in our case, between true signa-
tures and attempted forgeries). The discriminating power of each of the fea-
tures, or subsets of features, is determined by performing statistical tests
on a training set of data that is believed to adequately represent the popu-
lation of interest. The subset of features that yields the best performance
(by some criteria) and that contains the minimum number of features is the
"best" feature set. Many procedures and algorithms for performing computer-
ized feature selection have been devised. Some of these are based on uni-
variate F-ratio evaluations,* Fisher's discriminate analysis,t informationI measures such as divergence,f and a host of ad hoc procedures. For the cur-
rent project we tried a number of these techniques. Although some of them
performed reasonably well, we were not entirely satisfied with the results.
The standard feature selection techniques are all based on a number of
assumptions about the underlying probability structure of the feature set.
The exact assumptions differ somewhat from technique to technique, but in
general it is assumed that the set of features is distributed as a multivari-
ate Gaussian density, that the covariance matrices (see Appendix C for a
definition of the covariance matrix) are equal, and the like. Our signature
verification features do not appear to satisfy these conditions, and the re-
sult is that the feature selection techniques mentioned above do not operate
in an optimum fashion; that is, there is no guarantee that the feature set
obtained is the one that minimizes the Type I/Type II error rate. Because of
the somewhat unsatisfactory performance of these classical feature selection

*The F-ratio technique for feature selection is described in many textbooks.

For example, see W. J. Dixon and F. 3. Massey, Introduction to Statistical
Analysis, 3rd ed. (New York: McGraw-Hill, 1969), ch. 10; G. W. Snedecor and
W. G. Cochran, Statistical Methods, 6th ed. (Iowa State University Press,
1967), ch. 14; and D. E. Bailey, Probability and Statistics (New York:
Wiley, 1971), ch. 17 to 19.

tR. 0. Duda and P. E. Hart, Pattern Classification and Scene Analysis (New
York: Wiley, 1943).

'tS. Kullback, Information Thegry and Stec.istics (New York: Wiley, 1959).
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techniques, a new approach was devised that uses as its basic criterion the
direct minimization of the Type I/Type II error rate. * This effort, which
resulted in a much improved feature selection, can be summarized as follows:
We began by extracting a subset of the total data base of signatures. Because
we had an equal number of standing and sitting signatures, we typically used
the standing signatures to select features (training the system) and the
sitting signatures on which to make a final estimate of the error performance.
To cross-validate the results the procedure was reversed, so that the sitting
data were used as the training set and the standi 'ng data as the testing set.
This process of using different sets of data to train and test the system
provides a more realistic (conservative) estimate of the true error rates.
(Using the same data for training and testing would yield unjustifiably opti-
mistic results.) Starting with the full set of 44 features and (for example)
the standing signature data as the training set, we first calculated the
Type I/Type II error-rate curvest for all subsets of 43 features. We then
examined the results to determine which of the 43-feature subsets yielded the
best Type I/Type Il error performance. Next we calculated the Type I/Type II
error curves for all 42-feature subsets of the best 43-feature set, then for
all 41-feature subsets of the best set of 42 features, and so on.t What typ-
ically occurs in this process is illustrated in Figure 5. As useless and/or
redundant features are removed, the error rate decreases until it reaches a
minimum. Once this minimum is reached, excluding more features results in
reduced performance. The feature set that yields the minimum is selected as

the best set.

The above procedure is an approximation to the more complete process of
calculating the Type I/Type 11 error rates for all possible subsets of the 44
features, which is computationally prohibitive . Compared to the classical
techniques for feature selection, this method has the following advantages:

9 It requires no assumptions about the underlying probability distri-
bution of the feature set.

e The calculations involved are relatively simple and intuitively

reasonable.

a It selects a "best" feature set by choosing the subset that yields
the least probability of error (subject to the qualification mentioned
above that not all possible combinations of feature subsets are tested

*Generally, the classical feature selection techniques cannot be related

directly to Type I/Type II error rates exce~pt, as noted earlier, under a set
of restrictive assumptions about the probability structure of the feature
set (which are not satisfied by the signature verification features).

tThe procedure for calculating these curves is described in IV-A.

tThis leave-one-out strategy can be rather time-consuming in itself. We
were able to make the process more efficient by excluding more than one
feature per iteration.

1set of only 20 features would require more than one million Type I/Type 11
calculations.
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EQUAL
ERROR
RATE

I NUMBER
-OF

FEATURES

MINIMUM
ERROR
POINT

*AT INTERSECTION OF THE TYPE I/TYPE 11 CURVES

FIGURE 5 TYPE I/TYPE 11 EOIUAL-ERROR RATE' VERSUS NUMBER OF FEATURES

by our restricted search algorithm). This is not true of classical
feature selection procedures in general, whose results can be said to
minimi2e the probability of error only under a very restrictive set
of assumptions, which experience has shown is not valid for the signa-
ture verification features.

*It takes into account correlations between features (implicitly).
Redundant features (i.e., two features that are highly correlated)
are excluded by the process of choosing the minimum point on the curve
in Figure 5.

4. Type I/Type II Error-Curve Calculation Procedures

To calculate the Type I/Type II error curves, we developed an analysis
procedure that simulates how a real-world signature verification system might
operate. This program includes an enrollment phase ii. which templates are
constructed from the first few (typically 10 or 12) signatures for each sub-
ject, and a verification phase in which subsequent true signatures and
attempted forgeries are compared against the appropriate templates to deter-
mine the percentage of false rejections of true signers and of imposter
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acceptances. The system allows up to three tries (signatures to be compared
against the template) per verification trial. If the first signature fails to
pass the verification criteria, a second signature is tested. If the second
also fails, a third signature is considered. If all three signatures for a
particular verification trial fail to pass the verification criteria, the sub-
ject is rejected as an impostor.

A template updating procedure was used to continually modify templates
based on successful verification attempts. Each time a verification trial was
successful on the first try (i.e., the first signature satisfied the verifica-
tion criteria), the feature vector for that signature was added to the tem-
plate vector with a weighting of 1/8. Thus if a subject's signature varied
over time, the template would track the change. This template updating pro-
cedure was found to improve verification performance by reducing the percent-
age of true-signer rejections.

The basic criteria used to judge whether a particular test signature was
a true signature or an attempted forgery was as follows: As in Figure 3, let

4. 4.

s be the feature vector representing the test signature. The components of s
are the values of the set of "best" features determined by the method de-
scribed in the preceding subsection. Let t be the computer-stored template
or reference vector and a the associated standard deviation vector. The deter-
minations of t and a are based on an enrollment set of known true signatures

I. '". Rfrigt

(see Appendix C for explicit formulae for calculating t and a).Rfrigt
Figure 3, the measure of closeness between the test signature and the templateI is the weighted Euclidean distance metric

d I, si-ti

where f is the number of features, si is the value of the ith component or
feature in the feature vector S, ti is the ith component of the template
vector, and ai is the standard deviation of the ith feature as computed from
a set of enrollment signatures. (See Appendix C for the reasons for selecting
this Euclidean distance metric as the measure of closeness between the test
signature and the template.)

The quantity d(sVt) is a measure of closeness between the vectors s and
t.The smaller the calculated value of d(s,t), the greater the similarity

between s and t , and therefore between the test signature represented by s and
the computer-stored template t for the subject whose identity is being claimed
by the person desiring to be verified.

The decision rule f or deciding whether a particular test signature satis-
fies the verification criteria is:

9If d(s')<d , the signature is judged to be a true signature.

* If d('s,'O) dthe, the signature is judged to be an attempted forgery.
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The quantity dthres is a pre-assigned threshold value selected by using the
Type I/Type II error curves to obtain the optimum trade-off between Type I and
Type II errors for the particular application of interest. For example, for
high-security applications, dthres would likely be set to a relatively small
value to minimize the impostor acceptance rate, while for banking applications
in which the concern is usually to minimize user inconvenience (i.e., minimize
the Type I error rate) a larger value for dt hres might be more suitable.

The procedure by which the Type I/Type 11 error curves were estimated
from the data base is as follows: Let Tt represent the total number of veri-
fication trials in the true-signer data base, and let Rt represent the number
of trials for which a true signer was falsely rejected. Note that the number
of false rejections Rt is a function of the decision threshold while Tt is not.
In general, Rt decreases as dthres increases and increases as dthres decreases.
Recall that each verification trial allows up to three attempts, so that a
false rejection occurs only when all three signatures fail to satisfy the
verification criteria. The Type I error (false rejection rate for true
signers) is estimated as

Type I error E_
T

I The -symbol is used to indicate that EI is an estimate of the error rate.
When EI is plotted as a function of the decision threshold, dthres, the Type I
error curve results. Similarly, the Type II error is estimated to be

Type II error R E =
II Tf

where Tf is the total number of forger trials and Rf is the number of trials
for which a forged signature passes the verification criteria (i.e., the num-
ber oE imposter acceptances). Rf is also a function of the decision thresh-
old; it increases with increasing dthres and decreases with decreasing dthres.

plot ofEII versus dthe yields the Type II error curve. The justification
for using the particular form of error-rate estimation given above is dis-
cussed in Appendix D. E1 and E11 are the maximum likelihood estimates (assum-
ing independent trials) of the error rate for binomial distributed random
variables.

E1 and iii are estimates of the Type I and Type II errors, respectively,

tion then arises as to how confident we are that these estimates really cor-

respond to the actual population error rates. In other words, our data base
ionly a sample drawn from a larger population of true signers and forgers,
adwe must ask how well we can estimate the true error rates for the larger

population based on our particular sample. This leads to the concept of con-
fidence limits, which is discussed in Appendix E. Basically if we say that
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we have 95 percent confidence limits of ±1 percent for the Type I error rate,
this means that we are 95 percent certain, given the estimated Type I error
rate E1, that the true population error rate is within the range EI ±1 percent.
For example, if E1 - 2 percent then the true population error rate would be in
the range 1 to 3 percent, with 95 percent confidence.

5. Individualized Feature Selection

In the preceding subsection we have discussed procedures for feature
selection. These procedures can be used to determine a standard set of "best"
features to be used for all subjects or to derive a set of best features for
each subject individually. It is well known, both theoretically and from
practical experience, that the use of individualized feature sets generally
yields better signature verification performance* (lower Type I/Type II error
rates), provided that enough training data is available to estimate the sets
with reasonable statistical confidence. However, the use of individualized
feature sets requires a mare complex enrollment procedure, and it is not clear
a priori that the improved performance is sufficient to justify its use for

Some practical applications of signature verification. In essence, the prob-
lem with individualized feature selection is that a large number of enrollment
signatures is required from each subject to determine individualized feature
sets with reasonable statistical confidence. If a standard feature set is
usedo(ioe., if the same feature set is applied to all subjects) on the order
o0 t 12 signatures are adequate for enrolling a subject. This seems very
practical and reasonable for a real-world signature verification system.

Typically, to enroll in such a system a subject will sign five or six signa-
tures on two different days. The requirements are quite different for indi-
vidualized feature selection. Although the exact number of signatures needed
cannot be determined without knowing the exact probability structure of the
signature verification features (although they are definitely non-Gaussian),
a standard rule of thumb in such instances is that the number of independent
training (enrollment) samples be several times the number of features. Since
we begin with 44 features, this implies that the number of enrollment signa-
tures should be quite large, probably greater than 100, although it might be
possible, with less confidence, to make do with 40 or so (perhaps even less if
the set of features from which to choose'is smaller). In any case, for a
real-world application, this means that individualized feature selection may
require a relatively long enrollment procedure. However, a compromise is also
possible in which subject enrollment is based on a standard feature set, and,
as more signatures are collected through subsequent verifications, the feature
set is gradually and automatically individualized. But this approach has its
own disadvantage, that of requiring the system to store, at least temporarily,

*This is intuitively reasonable. Since all subjects write differently, we

would expect their signatures to be best characterized by somewhat different
feature sets. For example, the total time that it takes to write the signa-
ture is a good feature for subjects who are consistent in the timing of
their signatures but a bad feature for those who are very inconsistent in
total writing time.
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the large number of feature vectors needed for the process of individualized
feature selection.

For the current project it was necessary to decide whether to focus the
data base analysis on the features technique using a standard feature set or
individualized feature sets for all subjects. Because of the magnitude of the
data processing task (i.e., feature extraction, feature selection, and Type I/
Type II error-curve calculations for many thousands of signatures) it was not
possible to perform a complete and exhaustive analysis of both cases. For
reasons discussed below, we decided to emphasize the standard set of features
approach and process only a few problem subjects (i.e., the subjects with an
abnormally high error rate) using individualized feature selection.

The data base collected for the project is, to the best of our knowledge,
the first large-scale data base obtained using a three-axis signature verifi-
cation system. Hence we decided it was most important to determine how well
the basic signature verification system performed when using a standard set
of features for all subjects. This approach also has the advantage that we
can identify the small percentage of problem subjects from the standard fea-
ture set analysis and then apply the individualized feature selection process
to determine what kind of improvement could be obtained for these problem sub-
jects (discussed in IV-A-3). If we had started with the individualized fea-
ture set approach, there would have been no way to work backward to determine
how well the system performed with a standard set of features.

B. Correlation Analysis

The features technique for signature verification has the advantage of
simplicity and relatively low computational and template storage requirements.
However, previous pilot studies indicate that the use of more sophisticated
template-matching (i.e., verification) algorithms can result in substantially
reduced Type I/Type 11 error rates. For high-security applications the poten-
tially improved performance of a more sophisticated verification algorithm may
outweigh the added complexity and computational requirements. In the follow-
ing we describe SRI's "rubbery" correlation algorithm for signature verifi-
cation.

In this algorithm, the P, X, and Y time-series force signals of a test
signature are correlated mathematically with the appropriate P, X, and Y
template signals. If the correlation is greater than or equal to a preas-
signed threshold (i.e., correlation value), the test signature is judged a
true signature; if not, it is judged a forgery. However, a direct mathemati-
cal correlation generally yields rather poor performance (specifically, a high
Type I error or true-signer rejection rate) because of the normal everyday
variations in a person's signature. Even though the P, X, and Y signals for
two signatures may seem highly correlated by a subjective visual comparison,
there are often small time shifts within a particular test signature that
cause significant misalignment between the prominent peaks and landmarks of
the test signature P, X, and Y signals and the corresponding template signals.
To compensate for the normal vAriations in a sequence of true signatures, we
developed the technique of "rubbery" correlation, in which an automatic
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two-dimensional search is used to find an optimal match (within appropriate

search limits) between the test signature and the template, using various

combinations of time-base translation and time-base warping (stretch and con-
traction) of the test signature P, X, and Y signals with respect to the tem-
plate signals. These procedures can be applied independently to different
parts of the signature--for instance, we can partition the test signature P,
X, and Y signals into halves and correlate each half with the appropriate
template P, X, and Y signals. It is also possible to use prominent landmarks
(which are usually taken to be the pen-up intervals where the P signal, or
downward pressure, is zero or close to zero) to partition a signature into
smaller pieces on which to apply the time-warping algorithms.

The basic concept of rubbery correlation can be illustrated reasonably
simply in one dimension (instead of three dimensions as is really the case
when using the SRI pen): Let the template signal be represented as the vector
1(t) whose components are the discrete sampled values of one of the analog
signals obtained from a reference signature or template.

T (t) = IT1 , T2 , T 3 9 . . . . , Tn

where t indicates the vector transpose and n is the total number of discrete
samples. T1 is the value of the template signal at time 1, T 2 is the value
at time 2, and so on.

Let the test signal V(t) (obtained from a signature that is to be veri-
fied) be represented as

V (t) = (V1, V 2' V3. . . . ..  ni

The standard Pearson correlation coefficient is defined as*

F, N TiVi - ETi _Vi
C[T(t), V(t)I - h~-

[N (Ti2) -(FTi)2] [N (Vi2) -( Vi)2]

The expression for correlation presented above is convenient for the purposes
of explanation because its calculated values must lie between +1 and -1, where
+1 and -1 are the maximum positive and negative ccrrelations and 0 is no cor-
relation. In practice there are more efficient ways to compute correlation
if the -1 to +1 normalization is not required.

*T. W. Anderson, An Introduction to Multivariate Statistical Analysis (New

York: Wiley, 1958), p. 49.
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When V(t) is correlated against T(t), we judge V(t) to represent a true
signature if the calculated correlation is larger than a preselected positive
number, typically in the range 0.7 to 1.0. However, because true signers have
some variability in their signatures, the correlation calculations must be
made more flexible to allow a reasonable range of phase, amplitude, and time
variations. This can be done by computing the correlation function

CIIT(t), V(kt + t 0)]

for, an allowed range of translation (i.e., f or various to in the above equa-
tion) and stretching or shrinking (i.e., for various values of the multiplica-
tive constant k). The highest correlation over a specified range of discrete
values of k and to is thus obtained. If this correlation is larger than a
specified value, the test signature is judged to be a true signature. Further
flexibility is obtained by breaking the signature into pieces, either in fixed
proportions such as halves or by using signal landmarks such as pen-ups, cor-
relating each piece allowing for the k and to variations described above, and
combining them into a total correlation coefficient.

The procedure for calculating the Type I/Type II error curves for the
rubbery correlation signature verification algorithm is essentially the same
as described in III-A-4 for the features technique. The only difference isI that the measure of closeness between a test signature and the template is now
the rubbery correlation rather than the Euclidean distance metric.

C. Features Analysis (for Numeric Sequence Data)

The objective of collecting and analyzing handwritten numeric sequences
was to determine how well subjects could be discriminated on the basis of
handwritten samples of the same set of characters. As mentioned earlier,
this is an identification problem rather than a verification problem because
it is assumed that the subject makes no a priori claim as to his identity.
In verification, the subject makes an a priori identity claim and the test
sample is compared only against the computer-stored template (or reference)
corresponding to the claimed identity. In identification, the subject writes
a test sample that is compared against the templates of all the subjects to
establish his identity.

Our analysis of the numeric sequences is based on tfie 44 features de-
scribed in III-A-l. The set of 44 features was extracted from each of the
1,740 numeric sequences in the data base (see 11-A for a description of that
data base) using our PDP 11/40 and written to magnetic tape. A computer pro-
gram was written to translate this tape into a format compatible with SRI's
CDC 6400 computer. The feature data was then analyzed using the Statistical
Package for the Social Sciences (SPSS) supported by the CDC 6400.

The SPSS was used because it is ideal for the kind of identification or
classification problem posed by the numeric sequences. The specific program
used for the current analysis, known as DISCRIMINANT, is based on standard
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discriminant analysis procedures for classifying unknown test samples into
one of many groups. Since this program is very well documented* and is avail-
able on most large-scale computers, we will not discuss it in detail here.
The results of the identification analysis are given in IV-C.

I

N. H. Ne et al., SPSS, 2nd ed. (New York: McGraw-Hill, 1975).

M. J. Norusis, "SPSS Statistical Algorithms (Release 8.0)," Computer Soft-
ware for Data Analysis, Suite 3300, 444 N. Michigan Ave., Chicago, Illinois
60611.
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IV PERFORMANCE EVALUATION

In Section III we described the signature verification algorithms and
data base analysis procedures. In IV-A we summarize the results of the data
base analysis, in terms of the Type I/Type II error curves and average
access (or verification) time, for the features techniques using a standard
feature set that is the same for all subjects. For typical conditions the
equal-error rate* is on the order of one percent. In IV-A-3 and IV-B we show
the improvement in performance that may be obtainable by using individualized
feature selection and the rubbery correlation algorithm, respectively. In
IV-C we present the results of a subject identification study based on a
sequence of handwritten numerals, and in IV-D we discuss the human engineering
aspects of the process (i.e., how the subjects felt about using the system).

A. Features Technique for Signature Verification

The procedure for selecting features and estimating the Type I/Type II
error curves was discussed in III-A-3 and III-A-4, respectively. The set of
44 features (descriptors of the P,X,Y force signals generated by the SRI pen
during the writing of a signature) used in the analysis was also described in
III-A-3. In this subsection (IV-A-l) we begin by deriving the average time
required for verification (i.e., the average access time). In IV-A-2 we
present Type I/Type II error curves based upon a standard set+ of "best"
features derived from the original set of 44 features.

1. Access Time

The average signature length of the 58 data base subjects is 5.7 seconds.
Added to this is a 1.5 second delay that is used to determine when the signa-
ture has been completed (i.e., no writing for 1.5 seconds indicates the signa-
ture is over) and a processing time of 0.5 seconds. The processing time
varies with the length of the signature, and we have taken a worst-case esti-
mate. The signature verification system allows up to three tries (signatures)

As discussed later in more detail, the equal-eLror rate is the error rate at
which the Type I/Type II error curves intersect (i.e., where Type I error
Type II error).

tBy a standard set of features we mean a single" set of features that is used
for all subjects.

Subject PER was excluded from the data base analysis because other commit-
ments prevented him from participating for the full length of the data col-
lection period, and too few signatures of his were available to be analyzed.
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per verification trial, but the analysis shows that on the average only 1.1
attempts were required. The average access time is thus estimated to be

Average access time -(5.7 + 1.5 + 0.5) Y~ 1.1

8.5 seconds

2. Type I/Type II Error Curves

In this section we present Type I/Type II error curves beginning with the
so-called "Trues vs. Trues" error curves. These curves are calculated based
on the following: The known true signatures of a particular subject, say
subject ABC, are compared against his own template. The percent rejection as
a function of the decision threshold is the Type I error curve. * The Type II
error is calculated by comparing the true signatures of all the other subjects
against the ABC template. The percent accepted as a function of decision
threshold is the Type II error curve. This procedure is then repeated for all
subjects in the data base. Clearly the Trues vs. Trues error rate is a kind
of confusion rate, comparable to the situation in which one subject claims
the identity of another subject but attempts to use his own signature for veri-
fication. However, this is not a very realistic measure of the system's
Type I/Type II error curves and is included here only because this type of
error-rate calculation is very common in the literature. Following the pre-
sentation of Trues vs. Trues Type I/Type II error curves, we present the
Trues vs. Attempted Forgeries Type I/Type II error curves. In this case the
Type I error curves are calculated in the same way as the above, but the
Type II error curves are computed using attempted forgery data.

a. Trues vs. Trues

The initial set of 44 features was described in III-A-2. To select a
"best" subset of the 44 features we began by dividing the signature data into
two sets, a training set and a testing set. Because we collected an equal
number of sitting and standing signatures,t a natural division was made on
this basis. To begin we used the sitting signature data as the training set
on which feature selection was performed in order to determine a best subset
of the 44 original features (i.e., the subset that yields the least error
rate). Using the feature selection method described in III-A-3, the best sub-
set consisted of Features 1, 2, 3, 6, 11,.12, 13, 14, 16, 20, 22, 25, 26, 27,
28, 29, 30, 32, 33, 38, 40, 41, 42, 43, and 44. These features are described
in III-A-2. The standing data was then used to calculate the Type I/Type II
error curves, the result of which is shown in Figure 6. To compare results
we will use the point at which the Type I/Type II errors are equal (i.e., the

See III-A-4 for more details. Recall that the Type I/Type II errors are cal-
culated based upon allowing three tries (signatures) per verification trial.

tSignatures were obtained from subjects both sitting down at a table and

standing at a counter. See Section II for details.
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percent error where the curves intersect), which is called the equal-error
rate. This equal-error rate, indicated by the horizontal dashed line in
Figure 6, is about 1.5 percent for the standing data. To cross-validate the
results we revtctsed the roles of the sitting and standing data. In this case
the standing data were used to train (i.e., for feature selection) and the
sitting data for error-rate calculation. The feature set selected using the
standing data was the same as had been derived using the sitting data. The
Type I/Type II error curves for the sitting data are shown in Figure 7. Com-
parison of Figures 6 and 7 show the error curves to be essentially identical,
so the cross-validation yielded very consistent results, which gives us added
confidence in the results. It may also be concluded that there is essentially
no difference in performance whether the subject is sitting or standing when
he writes.

b. Trues vs. Attempted Forgeries

For the Trues vs. Attempted Forgery *Type I/Type II error-curve calcula-
tions we decided to use the same set of best features that had been used for
the Trues vs. Trues calculations. The reason for this is that the generality
of the forgery data is uncertain because very little is known about the
forger population. In any case, the use of the Trues vs. Trues feature set
is a conservative approach, and there is no question of testing and training

on the same data set.

The Type I/Type II error curves for the standing true-signature data
versus the attempted forgery data are shown in Figure 8. The equal-error rate
is approximately 2.25 percent, somewhat worse than the 1.5 percent equal-error
rate of the Trues vs. Trues data. The Type I/Type II error curves for the
sitting Trues vs. Attempted Forgeries is shown in Figure 9. The equal-error
rate is almost 3 percent.

Data analysis showed that almost all the forgeries occured for the two or
three true signers who were the most inconsistent in writing their signatures.
A simple enrollment criterion based on the total variance of the template was
subsequently tested. If the combined standard deviation was larger than some
assigned threshold, the subject failed the enrollment criteria and was ex-
cluded. This resulted in the exclusion of three subjects out of 58 and
yielded considerable improvement in signature verification performance.'
Figures 10 and 11 show the Type 1/Type II error curves (for standing and
sitting data, respectively) when this enrollment criterion is used. The

In attempting to forge a signature each forger was allowed up to 18 tries,
nine before viewing the video tapes and nine after. Because we found that
there is only a slight difference in the error rates for the two conditions,
the Type II error curves presented in this section are calculated using the
combined set of forgery attempts.

t This behavior is typical of verification systems. Usually most of the errors

are contributed by a very small percentage of system users.
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equal-error rates are reduced to 1.75 percent for the Trues vs. Forgeries
(standing) and to 1.25 percent for the Trues vs. Forgeries (sitting). By mak-
ing the enrollment criteria even more stringent, to where six or seven of the
most inconsistent subjects (out of 58) are excluded, the equal-error rates are
on the order of 0.5 to 0.75 percent.

Tests were also made of the effect of allowing the forgers to view video
tapes of the true signers writing their signatures. The error rate was
slightly worse when the forgers were allowed to view the video tapes, which
implies that the forger can learn something of the signature dynamics by
closely observing the true signer. The total effect, however, was not partic-
ularly significant.

3. Performance Results for Individualized Feature Sets

As discussed earlier, improved performance can be expected when individu-
alized feature sets are used. In this section we show, by example, the kind
of improvement that can be expected. Of all the data base subjects, CMS was
the worst in the sense of contributing the most to the Type I/Type II error
rates. In Figure 12, the solid lines are the Type I/Type II error curves for
subject CMS's true signatures vs. attempted forgeries using the standard
feature set described in IV-A-2. The equal-error rate is over 6 percent.
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FIGURE 12 TYPE I/TYPE II ERROR CURVES FOR SUBJECT CMS FOR THE STANDARD
FEATURE SET AND FOR AN INDIVIDUALIZED FEATURE SET
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The individualized feature set for CMS, which was derived using the method
described in III-A-3, consisted of Features 1, 2, 6, 11, 13, 16, 26, 27, 32,
38, 40, and 44.* The Type I/Type II error curves for subject CMS using this
individualized feature set are given by the dashed curves in Figure 12.
Note the substantial improvement compared to the Type I/Type II error curves
for the standard feature set. In fact, for the individualized feature set
there is no cross-over at all of the Type I/Type ir error curves, and so
the equal-error rate is zero. However, this is based on a small amount of
data (one subject's true signatures and the associated attempted forgeries)
and it would not be appropriate without extensive further testing to con-
clude that individualized feature selection would yield a Type I4/Type II
error rate of zero. However, based on this result and previous experience,
we believe (but have not proven) that a conservative statement of the im-
provement which could be expected from individualized feature selection is
that the equal error rate would be reduced by at least a factor of two
(i.e., the equal-error rate would be on the order of 0.5 percent or better
rather than the 1 percent as given in the preceding subsection).

B. Correlation Technique for Signature Verification

The rubbery correlation algorithm for signature verification was de-
scribed in III-B. Because of time limitations and the fact that our PDP 11/40
computer was down with hardware problems for more than two months, we wereI unable to process the entire data base using the correlation algorithm. How-
ever, the main question is whether the rubbery correlation technique is'more
effective than the features technique for signature verification. To answer
this question we processed true vs. attempted forgery data for those subjects
for which the features technique yielded relatively poor performance. As
discussed in IV-A-3, subject CMS contributed a high percentage (more than
6 percent) of the errors that occurred with the features technique. For the
same set of data, subject CMS's Type I/Type II error curves for the rubbery

results may be compared with the Type I/Type II error curves (indicated by the

solid lines in Figure 12) for the features technique. There is no overlap in
the curves in Figure 13 and so the equal error rate is 0, a dramatic
improvement.

Although we were not able to process enough data with the correlation
algorithm to give a statistically confident estimate of the Type I/Type II
error curves, our tests with some of the problem subjects, such as that for
CMS described above, suggests very strongly that the correlation technique is
substantially superior to the features technique for signature verification.

As noted earlier, the problem with individualized feature selection is
the requirement for a long enrollment period with many signatures. However,
this is not a problem for the correlation algorithm. The results for subject

These features are described in III-A-2.
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01S described above were based on using only the first nine signatures for
enrollment. The only disadvantage of the correlation technique, compared to
the features technique, is somewhat increased processing time and increased
computer storage requirements for the subject templates. For high-security
applications, these disadvantages are probably not very important.

C. Features Technique for Subject Identification Based on a Handwritten
Sequence of Five Numerals

In this section we present the results of the analysis of the handwritten
numeric sequence data base using the SPSS program DISCRIMINANT. * The SPSS
control filet used for the data analysis, which is shown in Figure 14, was set

See I1-C for the reasons that we chose to use the SPSS programs for the
numeric sequence analysis, as well for references relating to program docu-
mentation and data analysis algorithms.
tThe use of the SPSS control file and the many program options is described in

detail in N. H. Nie, et al., SPSS, 2nd ed. (New York: McGraw-Hill, 1975).
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RUN NAME RADC SIGNATURE DATA, FEATURES SELECTED II-XAY-S1 AT 06:46:35
VARIABLE LIST AUTHOR,SEQUENCEIPOSITION,TRUEFORGFEATUR01 TO FEATUR44
INPUT MEDIUM DISK
INPUT FORMAT FIXED(2F3.e,2F2.e,7F1e.3 ,/,I9X,7F16.3, /,I6X,7F10.3

/,IOX,7F10.3, /,IOX,7710.3, /,I0X,7F10.3
/,IX,2F10.3)

VALVE LABELS AUTHOR ( I)AAF ( 2)AEP ( 3)AEU. ( 4)ASI ( S)BEP ( 6)BJG
(7)CAU ( S)CBW ( 9)CEP (10)CNS (II)DEP (12)DRB
(13)DWV (14)ELF (lS)EMW (16)FET (17)FJM (I8)FLL
(19)GAN (20)GEG (21)GEW (22)HEP (23)HFS (24)JCZ
(25)JEE (26)JEM (27)JEP (28)JJS (29)JLP (30)JNH
(31)JRL (32)KCN (33)KES (34)LAL (35)LEL (36)MAB
(37)MAN-(38)MER (39)MFA i443)NRC (41JOEK (42)PER
(43)PES t44)PJP (45)PLH C46)RAB (47)RTK (48)RWH
(49)RWR (50)SAJ (SI)SDJ 452)SEA (S3)SEC (54)SEM
(55)SJW (56)TDK (S7)TPP (5S)TSS (S9)VXR/

POSITION (0)STAND (I)SIT/
TRUEFORG (8) TRUE (I) FORGER/

N OF CASES UNKNOWIN
SEED STANDARD
COMPUTE WGTVAR-I
IF (UNIFORM(I) LE 8.5) IJGTVAR*O
WJEIGHT WGTVAR
PRINT FORMATS FEATUROl ,FEATURI I,FEATUR2I ,FEATUR41 ,FEATURA4 (3)
LI1ST CASES CASES= 100/

VAR IABLES-AUTHOR,SEQUENCE,POSIT ION ,TRUEFORG
,FEATUROI ,FEATUtRI1I,FEATUR21 ,FEATVR41 ,FEATUR44/

READ INPUT DATA
DISCRIMINATE GROUPS-AUTHOR(l,59)/

VARIABLES-FEATUR01 TO FEATUR44/
ANALYSIS=FEATUR01 TO FEATUR44/
METHOD-D IRECT/I PR IORS2EQUAL/

OPTIONS 5,6,10,11,12,20
STATISTICS 1,2,3,4,6

FIG.URE 14 SPSS CONTROL FILE

up so that the DISCRIMINANT proram used approximately half (by random selec-
tion) of the 1,740 numeric sequences in the data base for training (i.e., to
estimate the discriminant functions) and the other half for testing (error-
rate calculations).

The basic result was that 90.4 percent of the numeric sequences in the
testing data set were classified correctly; that is, 90.4 percent of the time
a subject was identified correctly based upon a single handwritten numeric
sequence. This recognition rate can be improved by allowing the subject to
try again if hit first handwritten sequence fails to identify him correctly.*
The 95 percent confidence limits on the 90.4 percent recognition rate are
±2 percent.t

For example, assuming independence, the recognition rate allowing two trials
would be 99.1 percent.

t 04percent is an estimate of the true recognition rate for the population.

The confidence limits simply state that we are 95 percent sure, given the
estimate of 90.4 percent calculated from the data, that the true population
recognition rate is between 88.4 and 92.4 percent.
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Figure 15 presents a summary of the identification results on a subject-
by-subject basis. The vertical column of initials is the actual author of
the numeric sequence and the horizontal row of initials along the top gives
the initials of the subject identified as the author (which may or may not
correspond to the true author, depending on the success of the identification
process). For example, the first subject on the vertical column of subject
initials is AAF. Looking across that row we see that 17 numeric sequences of
AAF were tested and all correctly identified as having been written by AAF;
all 17 responses are listed under the column headed AAF. Similarly, there
were 12 total numeric sequences tested for subject AEP and all 12 of them were
identified correctly as having been written by AEP. Reading across the row
for AEW, we see that there was a total of 15 numeric sequences tested. Of
these, 14 were identified correctly and one was incorrectly identified as

I. I. OK .0 2 U 0 . U J 7 . I 4 Z %f

AAF 17

AEP 12

ASl 20

SEP I 18
BIG 15
CAV 72

CIW 13
CE P 13
CUS 14

R1 2is41 5'

DEP 

17
DL 1 3

M A 10W 12 1

0
X5 FET is

FJt 1 7 2 1
.j FLL I17

C AN 10 2

GEW 16

iP 13

RFS 13

JLZ 1 11

JEE 13

ANp 1

JJS 1 20 3

JLP 113

JRL . 13

A-:S 20

LAL 1 13

L L 23

IDENTIFIED AUTHOR

FIGURE 15 SUMMARY OF IDENTIFICATION RESULTS SUBJECT BlY SUB IECT

41



having beem written by subject A.AF. If the recognition rate were 100 percent,
thdre would be no off-diagonal terms in Figure 15. Only about half of the

subjects are listed in Figure 15 because a 59 X 59 * identification table would
not fit on one page. The intent, in any case was not to exhaustively list all
the subject-by-subject identification results but to present an example of how
the identification results were distributed.

D. Human Engineering and User Acceptance

Among the subjects polled, there were only two minor complaints concern-
ing the signature verification system. The first of these was that it was
difficult to see what one was writing because of the relatively large cylindri-
cal structure at the writing end of the pen. The second had to do with the
wire attached to the pen. However, all-subjects adapted very quickly, and
these problems did not affect the system's operation.

All 59 subjects were used in this part of the analysis.
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V SIUHGARY

In previous sections we described the data base and data collection proto-
col, the signature verification algorithms and associated data base analysis
procedures, and the results of the performance analysis. The performance
analysis section presented estimates of the access time and Type I/Type II
error curves for three signature verification algorithms * under a variety of
conditions. In this section we provide a summary of the most essential results
of the performance analysis.

The average access time was 8.5 seconds, dominated by the time required
to write signatures. Type I/Type II error curves for the features technique
using a standard feature set for all subjects was shown in Figure 11. The
equal-error rate (the percent error at the point where the Type I/Type II
curves intersect) is slightly more than 1 percent. These curves were calcu-
lated using attempted forgery data and all the true signatures in the data
base collected with the subjects sitting at a table. The 648 attempted forg-
eries were obtained from trained forgers who were given copies of the true

s igners' signatures, instructed in how the signature verification system

worked and what it measured, allowed to watch video tapes of *the true signers
writing their signatures, and allowed to practice as much as they desired
over a three-week period. Enrollment criteria, based on the variance of the
template, were imposed so that subjects who were extremely variable in writing
their signatures were not accepted by the system. Of the 59 subjects in the
data base, only three were unable to meet these enrollment criteria.

We believe that the Type I/Type II error curves in Figure 11 provide a
realistic and probably conservative estimate (i.e., slightly worse than it
really should be) of system performance for the following reasons:

e The same feature set was used for all subjects.

* Careful separation of testing and training data was always maintained.

* The analysis simulated a real-world enrollment procedure in which only
a few signatures were available from which to construct the templates.

9 In a real-world signature-verification application, a subject risks
being denied access if he is careless or sloppy in writing his signa-
ture, but there was no comparable motivation for the subjects to
cooperate in the type of data collection effort described here. In
an attempt to provide at least some motivation, cash prizes were
offered for the most consistent signatures, but in practice this was

The three signature verification algorithms were a features technique based
on a standard feature set (i.e., a single best set of features for all sub-
jects collectively), a features technique based upon individualized feature
sets (i.e., a best feature get derived for each subject individually), and a
"orubbery" correlation algorithm.
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not greatly successful. The lack of motivation led to increasing
signature variances toward the end of the data collection period for
most subjects, which probably caused some overestimation of the
system's error rates.

Signature verification based on the features technique but with individ-
ualized feature selection was also considered. This algorithm was tested
using the problem subjects (the few subjects in the data base who caused es-
sentially all the errors) and yielded substantially improved performance
compared to the features technique based on a standard feature set for all
subjects (on which the results of Figure 11 are based). Although we were
unable, because of time limitations, to process enough data to obtain a sta-
tistically confident estimate of the Type I/Type II error curves for individ-
ualized feature selection, based on the results of our limited testing with
problem subjects and our previous experience, we believe that the equal-error
rate is probably at least a factor of two better than for the features
technique using a standard feature set for all subjects. The primary dis-
advantage of individualized feature selection is that it iuay require a
relatively large numer of enrollment signatures.

Finally, the "rubbery" correlation algorithm was also tested using the
problem subject's data. Compared to the features technique based on a standard
set for all users, there was a dramatic reduction in error rate. However, as
was the case for the individualized feature selection technique, because ofI time limitations we were unable to process enough data to provide a statisti-
cally confident estimate of the overall system Type I/Type 11 error curves
for the rubbery correlation algorithm. This procedure used only nine signa-
tures, comparable to that required for the standard features technique. The
only disadvantage of the rubbery correlation technique is that it requires more
processing time and computer storage for subject templates.

In sum, dynamic signature verification based on a three-axis pen system
yields equal-error rates on the order of one percent using a features algo-
rithm and a standard set of features for all subjects. Analysis of a limited
data set indicates that a substantial reduction in error rate can be obtained
by individualized feature selection or rubbery correlation algorithms, but at
the cost of an increased computational burden. These are promising areas for
future development.
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Appendix A

DESCRIPTION OF THlE MAGNETIC TAPE CONTAINING
THE SIGNATURE VERIFICATION DATA BASE
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DESCRIPTION OF THE MAGNETIC TAPE CONTAINING
THE SIGNATURE VERIFICATION DATA BASE

A summary of the true signature, numeral, and forgery data was given in
Section II. This data is stored on tape RADC SIGNATURE DATA BASE. The tape
was generated using PIP (the version that supports magnetic tape reading and
writing) on our PDP 11/40. It is a nine-track, 1600-CPI tape, with volume
label - JSO. To read this tape on the PDP 11/70 under RSX 11-M the following
steps are required:

1. Mount the tape on a 1600 CPI, nine-track tape drive.

2. Allocate MT: (MCR > ALL MT:).

3. Mount the tape (MCR > MOU MT:JSO).

4. PIP can now be used to copy the data on the magnetic tape to the
system disk (or some other disk). For example, to copy file
TEST.FTN to disk DR0: use

PIP>DR0 - MT:TEST.FTN/BS:8192.
L-must include period

Note: Not all versions of PIP read from device MT: properly,
so the correct version must be used.

The true signatures for a subject are stored sequentially, one signature per
record, in a file of the form

TABCXABC. DAT; 1

where ABC is the initials of a particular subject. Since there were 59 sub-
jects in the data base, there are 59 such files on the tape.

Similarly, there are 59 files of numeral data for each subject. These

are of the form

NNUMXABC.DAT;l

The attempted forgery data is of the form

FABCXDEF.DAT; 1

where ABC are the initials of the true signer and DEF are the initials of the
forger.
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A test program, TEST FTN, to read data from the signature, numeral, or
forgery files and write the data out on a file TEST.LST is provided on tape
RADC SIGNATURE DATA BASE. This program and an example of the programs output
is given below.

As shown in the test program listing, the form of the read statement for
a particular record (or signature) is

READ(2) SAMPID, AUTHID, NSAMPS, ICORT, IDORW

(IDATE(I) ,I-1,5), (ITIME(I) ,I-l,3)

MNRESP,RMSDIF,(OLDVAL(J) ,J-l,44),

((JDATA(K,I),I-I,NSAMPS) ,K-1,3)

SAMPID is the label of the response and AUTHID is the writer identification.
For example, if the record contained a true signature of subject ABC then
SAMPID - ABC and AUTHID - ABC. If it is a numeral by the same subject then
SAMPID - NUM and AUTHID - ABC. For the forgery files SAMPID contains the
initials of the true signer and AUTHID the initials of the forger. NSAMPS is
the total number of P, X, or Y samples. NSAMPS * 0.01 gives the length in
seconds of the signature. The array OLDVAL contains the values of 44 features
discussed in III-A-2 and DATA contains the P, X, Y data (DATA is of size
3*NSAMPS).
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C Pr-,6raa Th'.1.FrT

C This program Te.#$ a dots rile (apecified h? typisY is lb.
C O3#jtctt *in.1iis) *ad pf,.ls 0N# the data in sp-,rd rv-'rd, a.
C f~l i # IST.LT . The pi.ria IT-Oapts the 1'..l , r the r-~rd
C asal-ors to b. prialed out. .ach rotrd .11tie a the 4.1. for
C a particular true sionatsre. augirel. *.r ollernr ld f.re To
C got a hardc..pp of The oulpvlt a.l eT~7. Tt. the TH AT NDPOGA OTUC p.ialr I,.. aeP8 e h c~ avitc .- tI'.7%/W~ THIAAADPORMOTU
C----------------------------------------t_---:---------------------IS ASSIGNED TO A PSEUDO DEVICE

0151WNS18 NAIALI491*IAES.ISEE DT*.tt ZZO:. BEFORE EXECUTING THE PRO-
C ------------------------------------------------------------------------- GRAM. THIS PSEUDO DEVICE MUST
C laitializ* a disk. fiule U.r,# detbugg~as Priutol BE ASSIGNED TO THE ACTUAL DISK
C ---------------------- ----------------------------------------- ON WHICH THE DATA IS STORED.C Got lb. asitials of the. *objectFO EXML.ITH DAA S

TYPE SFO EXMLITH DAAS
S FORISAT/O True siuatare. Nutral. ..r Forstry data* STORED ON DRI: THEN MCR) ASN

AcrEPT 7I ~ o t' DRI: in ZZO:
7 FORIAT 4AI I
TYPI 10

10 FORNAT/S Initials of the true sisser (3 characters) '
ACCEP 85 AUlION

15 FORNIAT'A31
Il1CIECK EQ. 'F', 0)0 22
8I 1CHS: CO E. 'i fNCCWEI8.20.NA1884T, AUTWOAL711NOA
tMdCHECK EQ. W1' E%CODEIS.21.NAM,,t AVrIOM

20 FORWATt'ZZO:T'A3.KX.A3.'.DAT;Ilt

G0 TO 27
22 TYPEL 23

23 FORIIATW/' Initials of the Forger (3 characters) 'I
ACrET 24. FOR010

24 FORIATA43'
ENCO~liJAll.2S.NANDATI AI'TWO.PORIG8D

25 FORATOF,.A3.2K.A3.*.DAT:l'I
27 TYPE J2N. NANDAT
29 FORMAT~/ The 8.8. opened is ',9A2)
2?4 CALLI A,% b2.4ANDA IN,

C.......................................................................
C Get the numbar of the resposse to ba printed or plotted

_9 REbIND 2

30 FORNTWO Record member lialugert '

Rea Ski he dato I he os ucjstifedro d
37 I NI8NC . IO
36 EAD2.ED10

37 T1 F 50 lK O.IF O03
39 READ2, SAMPIDJ. AITH ID. NSANPS. IIChJI M

* ,'IDATEI'. -. 1NNWJMI

"NTKf.5 hOLDVLt. *.

SI ('ON11 II. 04itl:(0 1131NRiPRq'I
o 01 5.1VAI. I.J 1 .4, MSDI - *E6TA,. I1 k 3

4*11T /.S11.1.11DAE 'A2. 1 IR1, * SA1
54 tWITI/.51 1 i 'aa.Vle
53 .1ttt21 4.SI6KRtt.3

52 FORMAT ,IHI.231.'PUX2XD 'Al4,3..*A TIV 'a4a..'W 1

So. FORAT;'/ 75 IX. *1alu'F*1%e '/s'
594 FON0AT-.28X1484.0.7.8.N.

C ----------------------------------------------------------------------
C Repeat if desired

C Alto. Pthe optios to tilt or to specify auclher record
75 PONtWAT'/S Prial owt sootlher record? IT for Yes af N far 11014

AmEPT 76.108H
76 FOGINAT4AS

18.1(1 .EO. WRI 01O TO gmI
ICH EQ5 . '*i 00 TO 29

00 TO 76

I TYPE lei
F ORATi//' 0-0~ ISOM -- Record meber aet of rass. *@0/W
OD TO 2"

C---- i i---------------------------------------------------------
"D

FIGURE A-1 TEST PROGRAM LISTING
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SAMtID 05 A1MUID * CIS NSAMPS s 672 UNEP , 3 RISDIF • 1.73

DATE 0 92-JUN-0S TIE - 12:54:

Festure Valu

-2309
2 26.963
3 17.86
4 -24.024

5 9. 259
6 6.867
7 386.000
S -1e.019
9 263.000

11 -6.90
22 37.471
13 16. en
14 -29.73
is 8.439
16 7.09S

1 7 3 4 . 00a
i8 -8.9l3l
29 264.o00
20 52.006
21 24.462
22 3 .629
23 21.713
24 -24.46225 9.0e38
26 7.135
24 346.00028 -8. I30
29 33.00030 42.e
31 41.910
32 45902

33 453S
34 2 1945
35 23. 784
36 -2.I4237 21 .715 NOTE: Program TEST writes this doto
38 22-. 1339 40-923 out to file TEST.LST;1 instead of

4* 6.650 drectly to the line printer.
41 -. 00442 9. 5W
43 6.000

44 6.4

13 Volo8 T values p vales

I -6I 
2 - - 3
3 -I 3 6
4 -64 9

IS -3 -6 96
19 43 -9 15

6 -S -77 21
2 -S 13 29
2 -I is 39
9 -1 -i 43
le -21 21 4911 "14 24 57

12 -14 24 66
13 -2- 13 71
14 -3 -9 7SIs -42 -32 9 I

26 -51 -47 9617 -so -9 ft
Is -54 -6S 90.•

19 I1 -70 91
20 -I -77 9221 -61 -79 95
22 -SI -12 9923 -ft -77 192
24 -21 197le
25 -3 -4 lee
26 3 -3 I164
27 1 -18 102
2814 -4 90
29 1$ -3 93

31 14 12 6

FIGURE A-3 EXAMPLE OF OUTPUT OF PROGRAM TEST
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32 36 Is 84 I19 13 -43 94
33 3 19 83 120 17 -35 89
34 -9 to 83 121 37 -24 86
35 -24 It 78 122 20 -16 85
36 -35 3 77 123 20 -9 81
37 -41 -9 78 124 20 -2 78
38 -48 -17 78 12S 37 3 72
39 -52 -25 79 t26 12 7 71
40 -53 -34 79 127 31 8 71
41 -56 -39 82 128 30 12 71
42 -58 -51 87 129 4 31 72
43 -61 -60 90 131 -2 9 73
44 -63 -68 95 .
45 -61 -76 9S 132 -23 -12
46 -60 -84 98 133 -28 -24 86
47 -S4 -92 103 134 -32 -39 91
48 -44 -102 106 135 -34 -52 95
49 -29 -103 113 336 -37 -61 too
so -II -95 !19 137 -37 -72 107
SI 1 -82 122 138 -36 -82 112
52 15 -69 123 139 -33 -89 114
33 i8 -56 116 140 -24 -90 15
,34 20 -4S 102 141 -15 -84 117
S5 15 -32 82 142 -i -74 118
56 8 -21 57 143 9 -63 19
S7 7 -14 42 144 17 -48 116
so 4 -J 29 145 20 -32 114
39 4 -6 21 146 20 -19 106
60 3 -6 13 147 22 -i1 99
61 0 -3 9 148 21 -4 90

-, 149 17 1 79
1se 14 4 6S

64 1 -2 4 153 9 a 55
65 0 -i 2 152 8 8 48
66 -1 2 1 153 6 5 44
67 -2 -3 2 15 7 0 43
68 1 3 2 133 7 -10 46
69 0 -1 2 156 6 -19 53
70 0 -1 e 157 6 -31 65
71 -2 1 i58 5 -41 75
72 -2 -3 8 159 4 -52 8673 -4 -7 Is 160 0 -62 94

74 0 -9 26 161 -6 -68 102754 -i 1 38 162 -13 -71 lie
76 -11 ,49 163 -19 -72 114

7713 -1 I 62 164 -29 -71 115

78 17 -9 72 165 -38 -72 135•79 29 -7 79 166 -45 -69 1 16
98 23 -5 93 W6 .-4S -70 lie
8111 22 -2 85 169 -42 -74 its

82 24 -2 84 169 -35 -76 11793 23 -4 Be 1 t76 -23 -76 114

84 23 -5 78 17" -it -68 113
eS 21 -8 73 172 0 -60 Ile
Be 17 -12 69 173 8 -48 107
87 13 -22 68 174 I1 -42 104
88 7 -29 65 15 Is -32 97
89 1 -33 63 176 16 -22 93
90 -S -34 60 177 38 -13 89
91 -10 -34 ,59 17 17 -2 85
92 -8 -34 62 179 13 6 82
93 -4 -29 65 Ise to 12 74
94 0 -24 69 181 3 137 70
9S 4 -15 72 182 -4 15 76
96 7 -4 74 183 -11 8 71
97 9 -1 78 184 -I8 -1 7S
90 3 79 385 -25 -32 82

99 3 8 82 186 -30 -48 92
I80 -3 13 8 187 -28 -68 304
lei -13 14 79 Ise -24 -78 333
192 -24 g $1 189 -14 -85 327
103 -38 o fi 198 -2 -83 130
184 -35 -111 191 6 -73 133
105 -41 -9 so 192 2 -62 130
196 -46 -13 79 193 Is -44 122
107 -48 -23 82 194 14 -23 110
Ie -531 -29 84 195 38 -4 94
1e9 -52 -37 so 196 5 7 84
110 -50 -42 96 197 3 12 74
111 -' -47 88 398 1 13 61
112 - -.53 91 199 -2 13 2
113 -3' -5 92
314 -29 -63 94 281 -4 i
Its -18 -63 05 292 -13 -9 47
i6 -30 -60 95 203 -14 -24 54
t17 I -55 97 284 -11 -39 64

338 9 -49 96 205 -0 -56 74r
FIGURE A-3 EXAMPLE OF OUTPUT OF PROGRAM TEST (CONTINUED'
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296 -4 -59 85 293 -35 - 1356
287 4 -63 99 294 -24 17 139
200 5 -61 lie 29S -11 31 139
209 19 -56 128 296 -2 37 134
210 28 -46 128 297 6 36 127
211 29 -3 138 298 11 36 119
212 3S -29 134 299 12 33 107
213 35 -19 13e 388 is 27 93
214 3S -13 127 301 17 24 8s
215 34 -7 18 302 19 16 so
216 31 -2 113 303 i8 9 77
217 36 1 109 384 17 -2 76
218 27 6 103 35 I5 -14 77
219 24 13 97 306 a -29 68
220 19 i8 88 387 -2 -46 96
221 12 24 82 30 -14 -56 89
222 3 19 1 389 -25 -66 92
223 -se 7 8 316 -37 -69 96
224 -23 -8 83 311 -49 -69 181
225 -33 -24 87 312 -56 -69 56
226 -45 -38 93 313 -62 -67 111
227 -54 -54 li 314 -67 -63 118
228 -61 -68 109 315 -64 -52 126
229 -67 -85 lie 316 -5. -32 134
230 -78 -168 124 317 -35 -58 144
231 -69 -511 531 318 -19 5 149
232 -61 -121 139 319 -3 17 153
233 -45 -125 143 329 7 24 ISO
234 -27 -124 147 321 12 25 141
235 -7 -114 148 322 to 23 I3c
236 S -97 146 323 17 21 114
237 17 -79 139 324 18 19 98
238 21 -68 126 325 16 17 89
239 21 -43 106 326 19 Is 84
240 16 -29 Be 327 20 2 86
241 9 -19 54 328 I5 -17 96
242 6 -13 4e 329 7 -37 89
243 4 -8 29 330 -8 -52 95
244 3 -7 28 331 -24 -62 94
245 1 -S 14 332 -35 -75 99
246 0 -2 7 333 -46 -82 106
247 1 -3 8 334 -54 -92 114
248 1 -2 S 335 -61 -188 119
249 1 -1 S 336 -61 -107 1_n
258 1 -1 3 ..7
251 0 1 j 338 -40 -113 139
252 1 -1 2 339 -23 -166 138
253 9 0 3 340 -58 -89 127
254 ] -5 3 341 -2 -67 IDS
255 e -1 5 342 1 -46 78
256 -1 1 1 343 8 -31 53
257 6 -1 I 344 1 -2e 38
258 1 -1 1 345 0 -14 26
259 8 -5 2 346 -2 -8 i8
260 5 -I 1 347 0 -7 14
261 -1 1 0 348 8 -S 9
262 2 -1 i 349 e -4 8
263 S -5I 23 350 8 -1 5
264 7 -4 35 355 -2 8 4
265 6 -5 46 352 8 -2 3
266 9 8 57 353 -1 -1 2
267 It 3 72 354 8 -2 5"A. 111 -t 9 3S5 9 0 1

'cw*jI 1 356 61 1 1,U= 356 -5 5 1

270 56 52 92 357 8 -1 3
271 16 14 94 3S8 -I -1 1
272 19 55 96 359 8 -5 2273 24 12 98 368 -2 8 1
274 24 55 97 365 -1 1 I
27S 25 7 95 362 8 -1 2
276 23 0 94 363 -1 8 2
277 23 -12 96 364 1 -i 2
278 21 -25 97 365 -1 -1 I
279 14 -41 95 366 -1 2 8
288 6 -5 94 367 1 -4 51
281 -7 43 94 28 1 -11 20
262 -t8 -76 98 369 3 -29 32
283 -29 -83 99 378 5 -23 44
284 -36 -85 l15 371 5 -25 59
295 -47 -88 16 372 If -26 74
286 -54 -66 lee 373 16 -29 so
287 -58 -87 113 374 23 -17 98
28 -62 -1 114 375 26 -13 104
289 -5 -8 117 376 29 -8 109
298 -64 -71 i19 3 36 -4 114
291 -6 -SS 123 378 23 8 li8
292 -49 -31 136 379 34 S 558

FIGURE A-3 EXAMPLE OF OUTPUT OF PROGRAM TEST (CONTINUED)

53



300 34 9 116 46? 31 -34 126
301 32 27 124 480 36 -21 133
362 29 19 too 469 34 -8 13
323 22 23 too 470 36 3 141
304 Is 26 90 471 36 12 142
385 10 29 92 472 35 13 142
36 -1 30 76 473 32 19 139
387 -8 21 74 7. , 1-.,
389 -15 to 74 4"/b W 32 ill
39 -22 -5 77 476 19 34 109
390 -25 -23 02 477 17 33 ISO
391 -26 -41 90 470 13 31 92
392 -22 -62 9 4?9 12 30 9
393 -to -91 tIe 460 Is 26 9
394 -14 -97 122 481 4 Is 94
39S -12 -221 134 462 -1 3 9
396 -12 -125 143 463 -11 -1 too
397 -15 -133 153 484 -29 -37 103
39- -8 -135 156 465 -25 -52 205
399 -25 -132 ISO 466 -29 -64 107
400 -36 -its 157 487 -31 -76 lie
401 -53 -90 ISO 46 -33 -s 112
402 -64 -72 143 409 -36 -96 115
403 468 -49 131 490 -37 -93 I2S
464 -66 -32 11 491 -38 -95 116
4-0 t20 492 -36 -97 Its
- 493 -33 -98 117
4- -6 494 -39 -98 216
460 -36 -19 7S 495 -25 -96 114
409 -23 -29 76 496 -1 -92 113
410 -0 -33 79 497 -5 -03 119
411 2 -35 83 498 5 -72 123
412 11 -36 93 499 13 -S9 126
413 17 -34 102 see to -41 124
414 23 -31 11 Sol 26 -26 122
415 20 -29 120 502 22 -14 119
416 32 -23 128 S03 23 -4 117
417 36 -19 13S 504 22 2 10e
410 30 -6 142 505 22 6 104
419 36 -2 142 SS 29 it 10
420 33 It 141 507 23 6 Ise
421 27 26 137 509 25 -S t0
422 25 27 131 509 25 -19 106
423 26 33 122 Ste 24 -36 lie424 17 36 IlI Si 19 -54 114

425 13 36 too 512 12 -6 16
426 9 37 90 513 2 -72 t16
427 8 32 9 S14 -12 -71 114
420 6 29 69 515 -26 -66 1
429 6 26 94 SI6 -40 -50 164
430 3 6 96 517 -47 -39 102
431 "5 -13 t02 Se -49 -27 95
432 -14 -36 ISO 519 -49 -15 91
433 -21 -56 113 520 -46 -6 as
434 -26 -6 1t 521 -43 -3 92
435 -33 -72 119 522 -36 -4 90
436 -39 -77 120 S23 -26 -t 79
437 -43 -84 123 524 -13 -16 03
438 -48 -66 124 S25 -3 -24 07
439 -52 -91 125 S26 7 -29 92
440 -51 -92 124 S27 27 -31 le
441 -47 -97 123 $29 26 -33 Jo6
442 -36 -99 J27 529 25 -30 112
443 -26 -99 130 S30 31 -26 lie
444 -12 -96 133 531 33 -26 121
445 3 -67 136 S32 36 -18 126
446 13 -73 136 33 35 -0 12
447 22 -65 140 534 33 S 129
440 27 -52 136 $35 28 14 126
449 38 -30 135 536 21 23 223
450 31 -22 127 $37 17 2 li26
451 29 -7 119 53 20 31 115
452 22 4 110 3s9 3 20 109
453 I8 13 s $40 -6 24 103
454 22 17 66 341 -16 It 99
455 3 19 76 3,42 -24 -9 96
456 -5 16 69
457 -11 4 4 S44 -31 -40 102
450 -15 -9 65 545 -32 -St 107
459 -20 -23 67 46 -30 -65 109
460 -22 -35 70 547 -23 -73 226
461 -22 -43 74 548 -13 -t 125
462 -14 -53 61 549 -4 -04 132
463 -6 -so $7 se s -60 137
464 3 -so 97 55I 19 -71 142
465 16 -54 lee 552 26 -610 147
466 22 -47 Its S53 31 -44 147

FIGURE A-3 EXAMPLE OF OUTPUT OF PROGRAM TEST (CONTINUED)
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554 33 -26 144 634 3 36 342s 39 -6 139 615 -1 3 322
556 23 6 134 66 -17 26 lee
557 17 17 127 617 -17 19 76
SS5 7 26 It6 616 -13 13 56
559 -3 27 385 619 -9 6 40
s68 -33 26 93 620 -6 6 27
561 -37 24 82 621 -5 5 19
562 -20 I5 74 622 -3 2 is
563 -21 9 64 623 -2 1 Ie
564 -23 1 62 624 - 0 6
56S -22 -7 59 62S -3 ? S
566 -20 -15 61 626 -2 2 4
567 -14 -26 64 627 8 3 4
566 -18 -35 68 628 -2 6 3
569 -I -39 73 629 -1 -3 3
576 4 -39 76 638 -1 -3 6
571 9 -33 62 633 -6 -2 19
572 i5 -38 87 632 -12 -11 34
573 19 -22 98 633 -22 -16 51
574 21 -17 90 634 -37 -28 7e
575 21 -to 87 635 -58 -22 87
576 21 -5 66 636 -65 -24 les
577 23 -4 86 637 -69 -27 I9
S76 23 -6 66 638 -69 -26 121
579 23 -12 88 639 -64 -27 128
58e 24 -16 92 64 -,59 -22 111
563 28 -34 183 641 -53 -18 99
582 Is -53 113 642 -41 -16 84
583 5 -69 122 643 -31 -13 64
584 -8 -8 133 644 -20 -6 44
585 -21 -81 142 645 -13 -5 38
586 -29 -81 153 646 -11 -3 21
587 -26 -71 162 647 -6 -1 i6
586 -13 -53 169 648 -5 -2 11
589 4 -33 173 649 -4 -2 9
598 16 -17 169 65e -2 1 S
591 20 -9 163 653 -4 1 4
592 28 -2 i57 652 -2 8 12
593 28 8 148 653 -12 8 29
594 28 3 138 654 -24 -7 5
595 27 S 328 65S -48 -13 71
596 25 3 126 656 -53 -17 9
597 20 -12 123 657 -64 -21 124
598 8 -34 122 658 -71 -23 143
599 -3 -52 124 659 -69 -22 153
608 -13 -66 124 668 -65 -22 146
601 -21 -73 127 661 -57 -21 128
602 -28 -79 129 662 -44 -20 184
683 -13 -@1 131 663 -32 -14 76
684 3 -76 136 664 -21 -33 52
685 I5 -66 341 665 -14 -6 35
606 24 -54 146 666 -38 -3 24
607 31 -43 153 667 -6 -4 i
60 39 -26 359 668 -3 -2 14
609 42 -5 163 669 -3 -3 38
61 40 -6 164 67e -2 -1 5

0; q 37 671 -2 2 4
18 672 8 8 4

FIGURE A-3 EXAMPLE OF OUTPUT OF PROGRAM TEST (CONCLUDED)
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An On-Line
Data Entry System
for Hand-Printed
Characters*
H. D. Crane
Stanford Research Institute

R. E. Savoie
Telesensory Systems, Inc.

Introduction Monitoring the direction of motion

The primary method of entering large amounts of rou- The writing system is based on the three-dimensional
tinely produced. hand-printed data into computer systems force generated at the pen tip during writing. This force
is via manual keyboards. Manual retranscription, however, consists of the downward force directed toward the paper
entails a number of disadvantages such as extra cost, and the drag force in the plane of the paper.
delays, and errors. From force measurements alone it is not possible to

Optical character recognition attempts to bypass the derive an accurate measure of pen velocity land therefore
manual retranscription process by providing automatic of pen position. because drag varies with paper friction.
reading of source documents. However, since OCR the exact orientation of the pen. and pen pressure.
processing typically is separate from document origins- Furthermore. the system has no knowledge of pen motion
tion, the generator of the document cannot realize the when the pen is lifted from the paper. However, absolute
benefits that accrue to real-time, on-line automated data pen position (although necessary for entering pictorial
entry. Often there is no way of knowing when substitution input material or for reconstructing the exact form of each
errors have'occurred, and OCR equipment is costly rela- input character as drawn) is not necessary for character
tive to other methods. recognition. It is sufficient, as we show subsequently. to

Real-time character recognition, i.e.,' capturing the determine the sequence of direction movements, which is
material as it is written, obviates the need for manual readily obtained from the force measurement.
retranscription or OCR. and provides for immediate The force-measuring instrumentation is incorporated
error detection and correction. However, a keyboard into the pen tip without any instrumentation of the writing
that accommodates a large character set - plus a hard- surface or the writing area. The vertical force on the paper
copy printer for each data entry station - can be quite indicates when the pen is "down" or "up." i.e.. on or off
bulky and expensive. the paper. The instantaneous direction of pen motion is

Alternatively. a direct entry system may use an inexpe- readily determined from the lateral forces in the plane of
sive writing device to make its own hard copy and to the paper.
produce machine-recognizable code. Writing systems to
track pen motions have been previously described, but
such systems require special writing surfaces, or special Three-dimensional force-sensitive pen
writing environments.' Therefore then systems, like the
keyboard printer, also tend to be bulky and expensive. A previous article ' on a direction-sensitive pen aNd its

This paper describes a system that uses a specially potential use in hand-printed character recognition showed
instrumented ball-point pen requiring no special writing that English letters can be described by a sequence of
surface. Unlike many OCR techniques, the method connected upidowif and leftright movements. The pen
described is dynamic. That is. instead of a post facto used a pivoted writing shaft that moved in response to
analysis of a complete input pattern - e.g., in terms of the writing force and made electrical contact with one
loops, corners, and height - the character recognition of four segments of a commutator ring. Although the
is based on real-time detection and analysis of the sequence device showed the feasibility of such an instrument, it
of writing directions taken by the pen. Each character is was crude and unreliable because it required mechanical
described in terms of an allowed set of stroke direction
sequences. The character actually recognized by the system 'hji system was conceived and developed by the authors it Stan drd
can be echoed to be verified immediately by the person Res.ech Institute Xebec Sistems. Inc.. Santa Clara. Cahfrmn is
generating the document. developing a commtarcial version of the system under licese from SRI.
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motion of the entire writing shaft. A later version used
a light-emitting diode at the upper end of the pivoted
writing shaft: the light wia directed toward a stationary
quadrant photocell The poeition of the shaft was tracked
by monitoring the movement of the light with respect
to the photocell. This optical system provided better force
sensitivity than the earlier version. but still required the
entire writing shaft to move. Also, both of these systems
required additional measurements to determine vertical
pressure.

In the most recent design, the pen point is mounted to
a diaphragm containing a system of strain gauges to
detect the instantaneous lateral and vertical forces on the
point. This version is shown in Figure 1. The pen point
must be maintained in a nominally vertcal direction during
writing; the angle of the barrel can be adjusted to suit the
individual user.

Figure 2 shows the photographically etched strain-
gauge array, which is bonded to the diaphragm inside
the housing that holds the replaceable ink c.rtridge.
The center of the diaphragm is rigidly connected to S
the pen body, as shown in Figure 3a. The force gen.
erated at the writing tip distorts the diaphragm, as
shown exaggerated in Figures 3b and 3c. With normal
writing, the pen point deflects less than a thousandth of
an inch.

It is easier to describe the operation of the strain-
gauge system if we imagine that the eight gauges are
arranged in four pairs, as shown in Figure 3a, rathef
than in the actual planar array form of Figure 2. These
pairs are connected electrically in a compound bridge
circuit (Figure 4) that isolates the three components of
the applied force. To see how the bridge operates, let X
and Y represent the left/right and near/far directions in ------ _

the plane of the writing surface, and P the vertically
directed force. A vertically directed force will cause the (Wl (b)
diaphragm to bend as shown in Figure 3b. The four
gauges on the top of the diaphragm will be in compressiom. Figure 1. (a) gall-point pen that measures the throodimen.
and the four gauges on the bottom of the diaphragm sional force generated at the tip during writing;
will be in tension. Hence, the voltages at Points A and B (b) Replaceable Ink cartridge and ballpolnt.tip
in the upper bridge will change by the same amount and assembly.
in the same direction; these changes will cancel in the
differential amplifier in the X channel. The voltages at
Points C and D in the lower bridge will also change by the
same amount and in the same direction, so there will be
no change in the Y output either. However, the polarity of
change at points C and D is opposite to that at Points A
and B. Accordingly, the changes at all four points are
additive in the central amplifier which measures vertical
pressure. Thus, vertical force is monitored by the central
channel, with no first-order coupling to the X and Y
channels.

A lateral force in the X direction will cause the diaphragm
to bend as shown in Figure 3c. In this case, Points A and
B will move in equal but opposite directions. These .
changes are additive in the output of the X channel but
cancel in the P channel. Thus. an X-directed force will
cause a change only in the X channel. Similarly, a Y-
directed force will cause a change only in the Y
channel. An arbitrary force on the pen point can thus
be resolved into X. Y. and P components.

Note in Figures 3b and 3c that the polarity of strain on 4
the lower side of the diaphragm near the center is
the same as the polarity of strain on the upper side of WIRING TAS
the diaphragm near the periphery. It is for this reason
that the four-pair gauge system can be realized in the STRAIN GAUGES
single-sided. planar array shown in Figure 2.

From the X and Y components of force, it is straight-
forward to determine the instantaneous angle of force Figure2 Sehemstledrawingof thew ptographieally elohd
in the plane of the writing surface (i.e., the direction of array o strain gauges that is bonded to a die-
writing). as well as the magnitude of the force in that phregm Inside the irdge housing.
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CONNECTION TO
PEN SODY x

0P

2 -~2

7::

(a) *POINT

Ci C 7

T T

IL Figure 4. Compound bridge for isolating the three-dimenlsional
Ib) force components.

T Do

T! C P L P

It 3 R 0. L R L
2 14

C 1t1 0 P D

'0 R U L.

-- 'I

Figure 3. (a) A strain-gauge arrangement in which the paired C
gauges are located on opposite sides 0f the dia- I
phragm; (b and c) ilustration ofthe affect of a 0P 4U
downwa rd and lateral force (highly magnified).

direction. The system also provides a continuous measure L~~U4
of P. the vertical force (orthogontal to the writing surfacel. 0 i.0
Although the pen provides high resolution force measure-
ments. it is sufficient for hand-printed data entry to quan- FiguireS. An ideealzed set of numeric erecters. The symbols
tize the measurements quite coarsely. In the vertical U,R.D.L. represent up, right. on left, and pen-up.
direction, it is necessary to know only that the pen point VsetnY
is -up- or -down.* i.e.. when the vertical fore is greater
than qome threshold. The X and Y signals are quantized
into the four quadrant directions: up. right, down, and
left, symbolized by U,. R. D. and L. "Pen-uap." symbolized
by a .. can be thought of as a fifth direction of motion. of direction signals describing its motion. With a reason-

The following section shows how these five direction able Ms of constraints on character formnation, the directio
signals (U. R. D. L. and .1 can be utilized in a practical sequences are sufficient for machine recognition of the
character-recognition system In this system, the diron printed characters. Figure 5 shows a typical set of direc-
of writing is sampled at a clock rat.s of approximately So tion sequences that is unique for the ten digits. For example.
to 100 per second. At this clock rate, each new direction the sequence for a 1 is ID..). meaning a down stroke
signal generally persists for many clock cycles. followed by a pen-up. It would be trivial to design a

logic system to recognize each character as shown.
Sequential character recognition algorthm However, there is wide variation in the way people form

characters. It is advantageous. therefore. to slow as broad
With the signals provided by the pen, direction of writing a range of sequences as possible for each characer.

is the only information available for character recognition. Otie possible approach to the - u "m ImPprob.
As each chara~cter is printed, the pen generates a sequence Ila is the "table look-up," which Hlts all allowed sequen-
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U*DR LO A 1
( :)Ia I PL

I 1

R ) L DU U

R _
R L-j D L

I I

-1 ', *u

~t . '..)

L R

, r l ERASEI.

7. NI •.1 1 R DU 1~>, IL \9INU INI

Figure 6. A portion of the state machine logic associated with the 1, 7, 9, and erae characters.

ces for each character; when a character is written, the a new search begins. It is convenient to think of a
generated sequence is compared with each entry in the marker advancing through the graph as each different
table. Allowance for a wide variation in writing styles may direction is recognized in sequence. For eample, an initial
require an excessively long table. A more efficient way left stroke would move the marker to state IL (Initial
utilizes a state machine with state transitions determined Lefti. The marker would remain at State IL for as long
by the direction sequences.' By appropriately specifying as the sampled direction siglr remained unchanged. If
the state transitions. particular directions or direction the writing subsequently turned down. D. the marker
sequences may be ignored if they are not relevant to the would advance to state LD (Initial Left followed by Down)
recognition process. Because the state-transitions depend solely on the direc.

In this section. we consider the operation of such a tion sequences. the path through the graph is indepen-
machine. The next section shows how the state machine dent of both speed of writing and size of charactera.
can be efficiently implemented with ROM components. Exceptions are the front-and and back-end timing delays

Figure 6 illustrates the portion of the graph of the described below.
sequential decision machine that recognizes the digits 1, In a genera state machine, any number of link path&s
7. and 9. as well as the "erase" character. The design may leave a stata. Each state of the pen machine has
demonstrates the range of possibilities that may be ache.v six link paths. five corresponding to the five directi s
able. The figure shows broad horizontal lines, which repre- U.R.D.L. and a sixth Idescribed belowl resulting from
sent the various states of the machine, and vertical LINK "timing out" (i.e.. remaining at an internal state with pen
PATHS. which describe the state transitions. The ovals up for a certain duration. Thus each state has six poeie
at the bottom indicate output characters and the amt successors. If. in Figure 6, a particular direction is not
state following the output. Theloqi structure shown is noted as a link path from a state, it meas that that
that of a clas-4 state machine,' in which both the next direction returns the marker to that state. For example.
state. g(X.Qt, and the out put. fX.Qt, an determined by state DD (Figure 6, lower4eft) is entered via a D lik
the present state. X. and the inputs, Q. The highest path, but subsequent D signals will not mos themo r,
state of the machine. marked INIT (initial), become nor will a U signal Only an L L or. signal fbllog
energi whenever a character has ben recognized. and the D will advance the marker.
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Let us now consider how this machine implements the chamcter. The fomner is described nominally as an ,L.C.R.D..e
specific character recognition sequence for the character 1. sequence. although variations are also permitted. In parti-
Although I is nominally described as a single downstroke cular. the sequence can begin with a down stroke. i.e..
followed by a pen lift. the logic can accommodate a wide ID, L. i. and can end with a left stroke or even with a
variation of sequences that are equivalent. For example, left. up stroke. Accepted variations are shown in Figure 7b.
starting from the INIT state, sequences (D..). (U.D..i. The erase character is basically a left stroke with the
IR.D..). and IU.R.D..) are all equivalent in moving the allowed variations shown in Figure Tc.
marker to state AA. Furthermore, the iR.D..) and IU.R.D..i We have noted that. from any state. an arbitrary output
sequences can be terminated with an R stroke - i.e.. code can be signaed and the marker advanced to any other
(R.D.R..) and (U.R.D.R..I - without affecting the final state. Let us note one other special capability: timing out.
termination of the marker at Node AA. The iD..) and A timing function is provided that measures the elapsed
U.D..) strokes can be terminated with a U as well as time since the last pen-up. If the elapsed time before the

an R stroke - e.g.. (D.U..) or (U.D.U.J. Thus all these next pen-down is greater than some specified magnitude
sequences are equivalent to the (D..) sequence. The accept- le.g.. 500 mseci. the marker will automatically return :o
able ways to make the basic downstroke of the character 1 the INIT state. and an arbitrary output can be signaled.
are summarized in Figure 7a. which illustrates the ability This is handled by treating the timing-outs as a sixth link
of the logic to ignore the inevitable glitches produced by path from each state. Without this special timing action
human writers, a 1. for example. as the last character in a string would

cause the marker simply to advance to and remain at state
AA. With timing-out. a I output is automatically produced
and the marker returned to the INIT state

1 ) 1 1 1 L L 1- ROM implementation

I-' ,-~~..-% , ~The recognition logic can thus be thought of as a state
(b) 9 , a machine with five direction inputs 'U.R.D.L..i. a time-out

input, and a set of output codes (e.g.. ASCII code wordsi
A particularly straightforward synthesis can be achieved

(C) - with ROM logic. The use of programmable ROMs is
especially useful during the iteration oi link-path struc-

Figure7. The basic vriations allowed in making #w characters tures. because changes. can easily be made in the ROM
1, 9. and erase, content rather than in the hardware.

Each state of the machine is asbigned a block of
addresses that contains all the link-path connections to
subsequent states plus the timing-out and conditional

Provision for this range of spurious initial and final output operations. Because it is possible to energze
signals, however, produces a conflict with the 7 - basically conditionally an output port as well as advance to another
an IR.D..) sequence - which would be treated as a 1. state, each location can contain either an output code or
To avoid this conflict, the seven is completed with a cross a new state address lindicated by the most significant
stroke in the European manner. bit of the word).

An efficient synthesis of the system can be achieved
This illustration of the crossing of a character introduces with 8K (1024-word x 8-biti IC chips. The most significant

the problem of character segmentation. How does the sys- bit (MSB) of each address is reserved as a flag to indicate
tem know whether an (R.D..) sequence, for example, is to whether the subsequent 7 bits are to be treated as a state
be a 1. or whether it will subsequently be crossed, mewing address (MSBf 0) or as a 7-bit output code tMSB = Da.
a 7? The conflict is resolved with the conditional output The remaining 7 bits allow up to 2'. or 128. state addresses.
logic implementd at state AA. To follow this conditional Each state, in turn. has 8 link paths: the five directions
output scheme, note that any of these cross-stroke U.R.D.L..) plus three others discussed below Thus. each
sequences - 'R,.). (U.R..). (R.U..). (U.R.U,.), or (U,.) - state occupies eight addresses. and each 1024-word. 8-bit
will advance the marker from Node AA through subsequent ROM can therefore implement 128 states. exactly the
states to the 7 output port. Any other sequence implies number addressable by the 7 bits. The numerics-only
that a 1 was intended and that the subsequent strokes machine from which Figure 6 is abstracted contains
were the beginning strokes of a new character. Note that approximately 75 states.
the cross-stroke sequences are therefore not allowable as
the beginning strokes of a character.) Thus, a left As shown in Figure 8, the 7 most significant bits of
stroke should signal a I and move the marker back to the address of any particular location in a ROM are
state IL where an initial left movement would have moved specified by a stat*-address register SAR), which specifies
the marker from an INIT start. Of course, many other a block of eight sequential addresses. A 3-bit link-path
direction sequences can follow a 1. These all signal a 1 address register ILARI determines which of the eight
and move the marker to the appropriate internal state. cells within the state block is selected. The ten bits
Consider. for example. a I following a I. The first I will together specify one of the 1024 words of the ROM. the
energize state AA. The subsequent (D.J sequence (or any output of which contains either the next state or an output
of its equivalences) will energi output port (1.ID). thus code. The LAR is set to 0. 1. 2. 3. or 4 according to
signaling a I (the first 1) and return the marker directly whether the current pen direction is pen-up. up. right.
to state AA via state ID. In other words, a sequence of down, or left respectively. It is set to 5 if the pen has
's will continually cycle through the output port (I,ID) timed out. If the ROM word currently addressed contains

and then back to state AA through state ID. all zeros, the LAR is set to 6 on the next clock
Also shown in Figure 6 is a portion of the logic pulse. This is used to implement a conditional output when

associated with the detection of digit 9 and the eram the next state is not INIT. as described below.
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ROM addressing scheme.

To follow the ROM synthesis in more detail. consider LAR LAR
the hypothetical machine shown in Figure 9a. If we have INDEX INDEX
reached state HH (i.e.. SAR contains the address HH) NUM8ER MEANING
and the pen turns downward, the very first clock cycle mse

that recognizes the D direction will set the LAR to 3.
At that indexed location is the address of state JJ, as HX4 STATE
shown in Figure 8b. which will be clocked into the state D
address register. The LAR, however, will not change as I u
long as the pen continues to move downward. During that 2 R
time. each clock cycle will address word 3 of state JJ. ji 3 '
which contains the address of state JJ. That is. stateJJ is I , 41 0 0 L
entered via a D signal. and the marker will remain atJJ R LS Ufor as long as the D signal persists. (If the address at ii K K L L 6:1'A

word 3 of state JJ were other than JJ. a sustained D 7 oi LL, MODE
direction would have caused the marker to move away from o
state JJ on the next clock cycle after entering state JJ.) I

If the pen is subsequently moved to the right. the LAR 2
will be set to 2. and the address for state KK will be 128 SATES

fetched. If the pen is lifted. -.". the node address will PER ROM
remain unchanged ILAR index 0 also contains address JJI. I ,
but if the pen remains up for longer than the specified
interval, the LAR will be set to 5, where the code for , STAT

output character a is found, and the state address register L STATE =

will be reset to the address of the INIT state. L U A '

All time-outs and most normal outputs will produce a I !,U

transition to the INIT state. The address of INIT is 2 1 __R

chosen to be SAR = 0. so that this state transition can 3=0- 11 D
be produced simply by clearing the SAR. Owing to this 4 L
choice, the address of INIT does not have to be stored IN 5 TIME OUT
in the ROM. 6 DUAL

For conditional outputs which do not return to INIT 7 MODE
(called dual mode), it is necessary to store both the output
code and the next state address. The implementation of fb)
this feature uses LAR index cells 6 and 7.

A dual-mode output is indicated when the contents of Figure 9. ROM realization of the state macmine structure.
the selected ROM word are all zeros. For example, at
state JJ the contents of LAR I and 4. i.e.. U and L. are
zero. If the pen moves in either of those directions, the
all-zero ROM word will cause the LAR to be set to 6 for
one cycle and then to 7 for the next cycle. During the addressed if the movement in a certain direction were
first cycle, the code for character ? will be outputted greater or less than some specified duration. These added
ibecause the MSB of that word is I); during the subse- functions woukl. of course. require large blocks of address-
quent cycle, the address for state LL will be fetched. es for each state location.
At state LL. a left movement will continue directly to Although many tradeoffs ar posaible - greater freeom
state MM. and a U movement will continue directly can be allowed in one character at the expense of others -
through to state NN. That is. starting from state JJ. a state machine, whether realized in ROMs, PLA's. or in
a U movement will move the marker to state LL and then, a microprocessor, is efficient in handling a wide range of
during the very next cycle, to state NN. Inserting the variations without having to list or to account specifically
extra state. LL. avoids the more complicated conditional for every allowed sequence. or even every element of each
structure that would be necessary if we had ;o program sequence. This is in contrast to a table look-up, which
the L transition from state JJ to one state and the U rqlree a complete listing of al allowed sequemae The
transition to a different state. design of recognition sequences in either case howeve, is

Other functions could be added to each state. For still largely ad hoc, and the partial structure usated
example, movements could be quantized into more than in Figure 6 has evolved through many intesctions to
four directions. or different LAR locations could be improve Performance.
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Performance characteristics

A major source of error for the novice is letting the
pen point rest on the writing surface in a static position
at the beginning or end of a character. A spurious pat-
tern of direction signals is produced because there is
strain at the pen tip even though there is no motion. To
avoid these spurious signals. the user must learn to move
the pen in the desired initial direction before for just as)
the pan touches the paper. and to continue moving in the
final direction as the pen leaves the paper. Of course, many
spurious patterns can be tolerated flogical "don't cares").
as has been shown in connection with Figure 6. Direction
signals are ignored during an initial dead time beginning
when the pressure threshold is first exceeded. This dead
tinie Itypically in the range of 50-100 msec) helps to ensure
that the pen is moving in the desired initial direction
before sampling actually begins.

By delaying the use of direction-change information.
it is possible to ignore any final directionis) that are
shorter than a minimum duration. This form of back-end -
timing minimizes the effect of spurious tails at the end of
strokes.

Another initial difficulty is learning to hold the pen
vertically. Any tilt biases the force pattern in the direction
of the tilt. With strong tilt to the left. for instance,
the direction encoder could continue to signal "left.'" even
though the pen were actually moving in another direction.

We have developed several effective r ds to learning.
Four direction lights continually signal the instantaneous
direction of writing. as determined by the signal processor.
Also. each character can be displayed on an accumulating Figure 10. Random characters recognized without error. Note
alphanumeric visual display andlor repeated audibly by that the system is Inhermily independent of charac.
loudspeaker or earphone as it is recognized. tr size.

Most users quickly adapt to the smooth movements
required as the pen touches and leaves the paper and to
the need to hold the on reasonably vertical, and error computer system, the entered data can be displayed on a
rates typically drop to a few percent within an hour or screen in the format of the form being filled out.
so of practice. After this learning pe-und. surprisingly The pen. in other words, can be used in two modes
variable writing can be tolerated, as illustrated in Figure 10, within an integrated system. In the format entry mode. a
which shows an array of characters written at one sitting computer processor is programmed by the pen to accept
by a single user. in which every character was correctly certain kinds of information in a particular format, as an
recognized. Note in particular that the system is inherently intelligent terminal might be programmed. in the data
independent of character size and quite tolerant of sloppy entry mode. the system accepts the detected characters
printing, as data.

Practical systems can be designed around this pen for
relatively small character sets, e.g.. the ten digits plus a Discussion
few special characters such as erase and space. A state
logic system for more than 40 alphanumeric characters The pen described in this paper permits a system
has also been designed. Users expevienced with the design requiring no special writing surface or special
numerics-only set can perform reasonably well with this writing environment.
larger set. However, it is not yet clear whether a practical In contrast to OCR schemes, which suffer from paper-
system with this many characters could be designed for related problems such as dirt smudges, breaks in the ink
a broad range of users. pattern, and folds in the paper, the scheme described here

uses information derived from the pen itself, not from
the writing on the paper. The final image is irrelevant

Format control to the character recognition process, and the paper can
immediately be reduced to archival status. Because of the

Thus far we have considered only the problem of simplicity of the recognition -logic and the elimination
recognizing isolated characters as they are produced by of special paper-handling requirements, the total system
the pen. However. as noted earlier, the system has no can be small and portable.
measure of absolute pen position in space. In ising the Static and dynamic methods of character recognition
pen to fill out a form. it is necessary to specify the box might be usefully complementary for very large character
or area boing filled out at any moment. sets - e.g., Chinese script - that neither technique

For use with common forms rather than free-format alone could handle. Characters having similar dynamic
entry, the pen itself can enter format information. By patterns but distinctly different static forms can be sep-
letter code. the pen can specify to the system what fields rated by static methods. For example, the letters P and
of date are to be entered and in what order, how large D drawn as ID..,R.D.L,-) sequences are indistinguishable
each field is. and whether the field is numeric or alpha- by the dynamic method discussed hee, although staticay
numeric. For final verification of data before entry to the they are easily distinguishable. Similarly. characters with
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similar stroke configurations. i.e.. similar static forms
in which the strokes are made in different sequences, can
be distinguished by dynamic methods. In other words.
certain dynamic information captured as the material is
written may be useful during subsequent processing eve
if not adequate alone for real-time proceessng.

The system deliversASCII code words as output and
is compatible. therefore, with computer teletype ports.
The strain-gauge transducers need to be sampled only
about 50 times per second, and only changes in direction
need be transmitted to the logic processor. Thus. only a
small amount of preprocessor circuitry need be connected
with each pen, and the direction information can be trans-
mitted with low bandwidth to a central processor. U
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THE SRI PEN SYSTEM FOR AUTOMATIC SIGNATURE VEXIFICATION

Hewitt D. Crane, Daniel E. Wolf and John S. Ostrem
Stanford Research institute, Menlo Park, California 94025

I. INTRODUCTION III. SIGNATURE VERIFICATIONI: PARAMETERS METHOD

A need haa been growing In recent years for a prac- The signature verification process is based on a
tical, automatic. personal identification system In template matching procedure In which the P. X. and Y
both government and private businesa. Applications force signals generated during the writing of the test
range from government high security, such aa control- aignature are compared against the P, X, and Y force
ling access to sensitive areas. to protection of access signals of the appropriate template stored in a cosput-
to computer facilities and data banks. Most of the er. The comparison can be made in many ways. But in
methods of personal Identification so far developed general, a numerical measure of the "closenass" of the
have been based on fingerprints, voice, personal Iden- test signature to the template is computed and compared
tification numbers (PIN), physical features such as against a preset value, whic. we call the decision
hand geometry, end naturally, the handwritten signature. threshold. If the numerical measure of 'closeness' Is
Signature verification is one of the most promising less than or equal to the decision threshold, then the
techniques, considering psychological acceptance, tech- test signature is judged to be a true signature. If
nical feasibility, and cost, the test signature is greater than the decision thresh-

old, it is judged a forgery. A parameters (or features)
By "signature verification" we mean the following: technique computes as the numerical measure of close-

The person whose identity is to be verified gives a ness a normalized vector difference between a set of
name or ID number and writes a signature, which will be feature values extracted from the test signature and
referred to as the test signature. The test signature the corresponding feature values of the appropriate
is then compared with a comoputer-stored representation, template. This technique is compLtationally efficient,
called the template, of the signature corresponding to requires only a small amount of template storage for
the given name or ID number. If the test aignature is each system user, and can be implemented in a stand-
"close" enough to the template by some appropriate mea- alone microprocessor unit. Other, more sophisticated
sure, the person's identity is verified; if not, he is verification techniques are discussed briefly In
judged an imposter. Section VI.

Automatic signature verification requires a repre- In the parameters technique, a number of parameter
sentation of the written signature in a form suitable values (features) are extracted from the three continu-
for computer input and subsequent data processing. ous force-signals generated by the pen during the writ-
There are basically two ways to obtain such a signature ing. These features include the total time of theIrepresentation. One is to scan the signature optically signature, the time the pen is on the paper, the timeafter it has been written; this technique is similar in the pen is off the paper, the average force in each of
principle to that used for optical character recogni- the three dimensions, the average energies, the average
tion. However, optical scanning devices usually are angle of writing, and many others. It Is likely that
bulky, expensive, and generally unsuited for real-time not all of the extracted features will be equally of-
applications of signature verification. A more attrac- fective for discriminating between true signatures and
tive and useful approach is to have either the writing attempted forgeries. Also, it is desirable to reduce
device or the writing surface generate signals repre- the number of features to save computation time and
sentative of the signature while it is being written, template storage space. For these reasons, a feature

selection technique Is used to select those features
In this paper, we describe an aut...atic, real-time most effective (resulting in the least probability of

signature verification system that has been developed error) in discriminating between true signatures and
at Stanford Research Institute (SRI). We present forgeries. Thus far in our analysis, we have examined
Type I (true-signer rejection) and Type 11 (forger ac- more than fifty such features. By application of a
ceptance) error rates as determined from tests on a standard F-ratio method of analysis (see reference 2),
first data base of true signatures and attempted forg- typically we reduce the number of features to between
eries. In the discussion In Section VI we state why we 10 and 20. Either a uniform set of features is used
believe the results presented are conservative and will for all subjects or sets that are personalized for each
be Improved in the future. subject are used.

11. SRI THREE-AXIS PEN Given a met of features, the decision-making algo-
rithm used for deciding If a particular test sipaiture

The SRI signature verification system uses a strain- is a true signature or a forgery is as followa: When
gauge-instrumented ballpoint pen, st own In Figure 1, a test signaure is written, a value for each ot the
that was developed by Crane at SRI. A smell array of features is extracted from the P. X, and Y signals.
strain-gauges near the ballpoint tip generates three The test signature mny thus be represented by a feature
electrical signals that are representative of the in- vector t, defined a
stantaneous three-dimensional drag force at the writing rs11tip. Specifically, three independent orthogonal com- -82
ponents of the total drag force are measured: downward1.
force perpendicular to the plane of the writing surfaca* 1. 1
(henceforth called pressure, or P), far/near force in1 1
the plane of the writing surface (called Y), and left/ Lf
right force in the plane of the writing surface (called
X). Each of the three force signals has a high signal-
to-noise ratio. The pen has an ordinary writing tip where f is the number of features extracted from the
and it requires no special writing surface. test signature and s is the value of the ith feature.

To determine If the I eat signature is a true signature
or a forgery, the feature vector, t. must be coupared
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with the appropriate template vector, t. A template template space ls required (since an entire covariance
vector t must be obtained for each system user. This matrix must be stored for each user); and, most impor-
requirement necessitates a simple enrollment procedure tant, a large number of true signatures (typically,
in which each user signs several of his true saignaturm. several times f signatures) i required to obtain a
The template vector for each user is constructed by statistically confident estimate of each user coveri-
averaging the N signatures obtained during the enroll- ane matrix, thus leading to a much-extended enrolluast
meat procedure. Thus, for a particular user procedure. For these reasons, we employ a simpler form

of distance metric, obtained by assuming that the fea-
--**" tures are mutually statistically independent. In this

case, all the off-diagontl elements of the covariance
t2  -matrix are zero (i.e., o -0 for i 0 J), and Equation

6 reduces to

t(2) d) -2Lf (ai),
d('8) - X__ s t (7)

-here for convenience me have compressed the notation

by setting aii - V

where tt  - -- t IJ (3) The distance metric of Equation 7 is simple, fast
j1l to compute and requires only 5 to 10 true signatures

for the user to be enrolled. However, some loss of

is the average value of the ith feature and ti1 is the performance is expected if the set of features he sig-

value of the ith feature for the jth true signature oh- nificant linear correlation.

tained during an enrollment procedure in vhich N signa- n fact, it is probable that the signature verifi
turs are taken, cation features are not jointly distributed as a multi-

A template covariance matrix, C, can be computed as variate gaussian density. In this case, neither of the
previously shown distance etrics are known to be opti-

2 2- mm. and it Is not clear that the distance metric givas
012 a by Equation 7 will yield worse performance than thei.f i more complex distance metric given by Equation 6, even

2 2 if the features are significantly linearly correlated.
021 022 We therefore use the distance metric of Equation 7 be-
- . (4) cause, even though it probably is not optimum, it Is

still a reasonable classification algorithm that has
yielded good performance in prior studies, and has all

. "the advantages previously mentioned for application to
a practical signature verification system.

Using the distance metric of Equation 7 requires

that two numbers (an average value and a standard de-

2 1 N viatton) be stored for each feature of a subject's te-
where a k E1 (ttj - t

2
l (tkj - tk) (5) plate. Basing the analysis on, say, 10 features there-

ik J-l fore requires storing 20 numbers per subject (epproxi-
Zmtely 200 bits). By selecting a set of features for
each subject, it may be possible to use only 5 to 10

are the unbiased estimators of the elements of the co- features per subject, both reducing storage require-

variance matrix. C. The diagonal elements are the vari- ment* and improving performance.
ance of the respective parameters; a2 is the variance-r ~it IV. DATA BASE

of the t
h 

feature, and oi* / is the correspond-

ing standard deviation. A data base of true signatures and attempted forg-
eries has been obtained for the purpose of estimating

Cnder the explicit assumption that the set of f the Type I and Type II error rates for this system.
features is distributed jointly as a ultivariate Sixteen persons selected randomly from a larger group
Gaussian density, it can be shown that an optimum rule of volunteers were subjects for the date base. In-
for classifying a test signature an true or as a forg- cluded mere secretaries, research assistants and engi-
ergy is the following. neers. Each subject was given a set of written instru-

ctions describing the procedure for the sign-in seasions
Cupute the distance metric and was scheduled to appear for between one and three

sign-in sessions per week over a period of three month*
t (-) (6 for a total of 16 sign-in sessions. At each session,( -0 Cthe subject signed his or her own signature three tim

and attempted two forgeries of one of the other data
(where t indicates the transpose operation and C is base members. For the forgery attempts, each subject
the inverse of C), and declare that the test signature was given several copies of the signatures of all the
is true if d(l) is equal to or less than the decision other subjects, a written form that stated that the
t,::eshold end that otherwise, it is a forgery, signature verification system based the trueffortery

decision on matching the forces and motions involved in
Unfortunately, the distance metric of Equation 6 writing a signature, and was encouraged to practice

has several disadvantages for application in a practi- prior to the formal forgery attempts. The subjects
cal system if f is large. The matrix inversion of C were not given any feedback either on whether their
may be quits tlme-consuming; considerable space for true signatures were verified or whether their forgery

attempts were accepted or rejected.
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The P, 1. and T force signals for eah of the true dif ference values reater than 1.4. and 8 of the 425
signatures and attempted forgeries were ecored em mag. fotretlso had M if feronce valuges 1e tbS. 1..
netic tape. A the conclusion of the specified time Alternatively. 379 (or 94.4 percent) of the true signs-
period. about 800 true signatures aid 425 attempted tore@ had ISvalues less than 1.6. and 417 (or WI.
forgeries had been collected. percent) of the forgeries had INS values greater than

~ ililiTEThe overlap between the true and forgery data Is
The atawereanaysedIs everl wys.the source of the Type I aid Type It error@. The amit-
The atawereanaysedin everl w~etude of each type of error Is a function of the value

The 800 true signatures were divided raidouly iato of the threshold for the In3 difference that Is choseen
two groupe of 400. The selection of features for each above which a signature is called false aid below which
subject wee made using ai VF-ratio analysis to choose It Is called true. Megnitude of error an a function of
those features that were moet effective In diacruds- threshold is shown In Figure 4 for the data of Figure 3.
nating his or her true signature. agant all ether Note that the Type I aid Type 11 errors e aen equal
true signatures of the first grp of 40. (This tech- value (1.7 percent) at ai INU threshold level of 1.75.
nique of feature selection could be automated Is a
practical signature verification syetsm.) The actual First 40 Data Files
error rate calculations them were performed using the
second group of 400 true signatures together with all Figure 5 shove the error results when only the first
of the 425 forgeries. A template for each subject we. 40 data filesi are coneidered. Actually. the equal
constructed by averaging together all his or her true Type I/Type 11 error rate Is the e (1.7 percent).
signatures In the second group of true dat .- Th al- although the T~pe it error rate falla more rapidly with
culated error rate. using the deciaion-emkiag alga- lower threahold values. Thus, at a threshold IN level
withn of Equation 7, are show In Figure. 2, 3. endi 4. of 1.8, there is a 0.7 percent Type 11 error rate (La..

forgery acceptance) aid 2.3 percent Type I error rate
To calculate the Type I error rate, a value of the (i.e., true signature rejection).

distance ustric mat be computed for each true signa-
ture. However, if the distance settic for a perticular pressure and Tinina Parameters only
true signature is computed using a template that In-
cludes that particular signature, the resultant error figure 6 show the error rate plot@ when the 40 data
rate will be overly optimistic. For this reason, we file. of the previous section are rerun with all of the
subtracted each true signature from the template when I-related and 1-related parameters deleted. The equal
its distance mtric was computed. errrt s5pret

Toward the end of the data base, we observed that VI. DISCUSSIONIthe error rates eemned to increase. We believe this ?e eut utb raoa titypeiiay
was because sa subjects eventually lest interest anTeerslamstb raedssritypeiiay
becae carlees. owing to the lack of feedback and
motivation in the experimental design. this perhepe no one involved with the development of the pen or
can be nfilised by better experimental design a m signature verification system was also Involved is any
well not be an Important factor In an operational of the data-taking sessions. tn this way, we hoped to
system. For this reason, we considered It of Imterest eliminate any biasing of results that might hae bae
to perform again the error rate analysis, but this caused, for example, by subconscious coaching of the
time excluding se of the later data-taking sessions. subjects by these who knew the system best. However.
Thus, error-rate calculations that use only the first we would do sae things differently In developing an-
40 data file*, out of a total of 58, are presented in other data bae" *first. we would cheese a different
Figure S. location for the teat (a number of subjects complained

after the data base mas completed that the computer
Finally, we analysed the first 40 data fMen using room In which the data was taken was vary cold and

pressdre- and timing-related features only, to teat ho their hands felt stiff). Second. we would shorten the
much Improvement can be expected from a syte that time over which the data is collected or try to increase
utilizes a 3-axis Pen over a single-ais (I.e., pressure- the mtivation of the subjects. Ve found that the true-
only) pen. These results are shown in Figure 4. signer templates tended to develop larger standard de-

viations toward the end of the data base collection
All Data Files period, probably because of the lack of mtivation and

resultant loe of Interest noted earlier, Because of
Figures 2(m) aid 2(b) are computer printouts in In.- the greater template varianct", the forgery-acceptanice

ementa of 0.1 in INS difference (we call the calou- rate increased. For this reason, we expeted signifi-
lated value of the distance metric, 24ustism 7, the cantly better results from the first portion of the Wat
MNS difference) for the true signatures and forgeries base, although the curves of Figure 3 do not show as
of each subject. Figure 2(s) ammarites the truie- much Improvement as might have been predicted.
signature data and figure 2(b) displays the forgery
data. From figure 2(s). we sea that the first subject ConservAtive Asects of the kessults
(JAB) entered 28 true signatures (the sum of colum 1). Ws believe that these results &re conservative in
ranging in value of L.33 difference free 0.4 te I.?. tremjrwy.Frt h aam ae ihO
The second subject (JLC) entered 2) true signatures tremjrwy. Fsthdaawsctakenfitate
(the sum of column 2), ranging from 0.5 to 1.6. Fron early, ssai-productiem model of pen, wih iotne
figure 2(b), we met that there were 30 attempted forg- Iy, had a round body. Subsequently. we have ebtained
tries of subject JAN. the closest having a value of 2.0. improved results with a triagular-haped pen of the
There also were 30 attempted forgerie ef sujctJe type shown ink Figure 1. The X and I signals frem the
the 11oa062 having a value of 4.4. pen are senaitive to the angle of "roll" about the ma

asis of the pen. With a tranguplar Bedy, the subject
Figre 3 Am a distributim plot of the true ma grasps the pee musemor consistently every time Of

forgery values screas all subjecs. Ws a"e, for a- "es, my~ parameters that we sensitive to tell Gould
aMpl*, ahet 14 of the 393 true sinateres had M be elimiated from the smalyso bet Including thee



results in a great improvement in performance (although handed subject o the data bae is Yet another somer-
consistent roll angle should not have much effect on vative aspect of the reaults. Lamach as lefthanded
pressure and timing parameters). This result was firt and righthanded users generally are easily distinguished.
noticed in a forual way when taking a emall data base
of Chinese signatures using native-born Chinese. Chi- Correlation Nethods
nee* characteristically hold a pean loosely, somewhat
like an artist's paint brush. Performance with a We have developed also a correlation method for
round-bodied pen--initially poor--became comparable to signature verification. In this method, the P, X, and
the results shown here when a triangular-shaped pen Y tie mserias force-signals of a test signature are
wan substituted while the group of subjects remained correlated mathematically against the appropriate P.
the same. 1, and Y template signala. If the test signature's

correlation l'groater than some preassigned threshold,
Second, for the purpose of analyzing this data it is judged true, and, if not, it is judged a forgery.

base, an individual's template was made by averaging However, straight mathematical correlation often yields
true signatures taken over a period of three monthe. poor results because of the normal variations in
A more likely procedure, at least in some operating different true signatures. Even though the test signa-
systeme, would be to use the first half-dozen or so ture and temlate P, X, and Y signals may be highly
signatures for each subject as his or her template, correlated by a subjective, visusl comperison, small
and update periodically by averaging In signatures time shifts within the test signature P. X, and Y
that are verified with an 31S difference value lees signals can cause important phase shifts with respect
than. say. 1.0 or 1.2. In this way, the templete auto- to the template P, X, and T signals. To compensate
metically would track any slow changes in the subject's for this effect, we have developed a number of tech-
snature, and the subject's standard deviation values niquee based on what we call "rubbery" correlation.
would tend to be smaller, making his signature more In these method@, an automatic two-diaenional feitt
difficult to forge. However. we were not able to re- procedure is used to fld en optiml match between the
analyze the data on that basis for this paper. template and test signatures, allowing time base trm-

l lation and time warping (stretch and contraction) of
Finally, while the F-ratio technique for feature the test signature P, X, and Y signals. These pro-

selection is simple and efficient, it is by no mems cedures can be applied independently to different
optimal. Its primary disadvantage is that it evaiu- parts of the signature--for instance, applied to the
Ites separately the discrimination power of each fee- first half of the template and test signale and then
cure, Ignoring the effects of interfeature correlations. independently to the second half of the signals; or
Also, the F-ratio has no definite relation to the prob- the analysie can be done in thirds.
ability of error, except when the distribtlon of
values for a feature for the true sIpatqe and for#- This method requires approximately ten times as
eries are both Gaussian and distribute4 with equal much storage per subject (several thousand rather than
variances. Therefore, we believe that the process of several hundred bits per user) but ha the potential
feature selection can be laproved, and that the error to yield significantly better performance than the
rates probably can be reduced. We have begun to ex- parameters method. With correlation, even if a po-
plors other methods for selecting sane of features., tential forger has all of the ra sigal date aveilable.
which will be reported at a later time. he would have to be able to tranalate the 3-ais

visual information into appropriate muscle rwpoues
Other Forms of "Sisnature" with grat accuracy. Preliminary results sbow that it

Is very difficult for even a determined Individual to
Our discussion has ephasized actual signatures, Xarn to make such a match. Thes rubbery correlation

but the system works well also with symbols of any methods will be reported in a future paper.
form. such as the user's initials, the digits fromO-9.
or one's telephone number.. No formal data, however, We believe that for some applications, and depend-
has thus far been taken with other than normal signs- ing on the degree of performance required, there may
tures. be value In using both the quick-and-easy parameters

method and the more sophisticated correlation methods.
Other Form of Devices for instance, the methoda of analysis have a degree

of independence so that their simultaneous application
We have described a three-axis pen as an input de- should result in improved true/forgery discrimination.

vice to a signature verification system. A three-axis
platen svtem also has been developed at SRI for this VII. SMARY
purpose. 3 With this device, the user can write with
an ordinary pen or pencil. Such a system might have We have described an automatic esinature verifica-
significant advantages in certain applications, al- tion system. The system uses a ballpoint pen equipped
though informal data show that it mey yield somewhat with an array of strain gauges mounted near the ball-
poorer performance than a system that utilixes a pen. point tip. The gauges record the instantaneous three-
In fact, its performance is likely to stand intermadi- dimensional, or three-axis, drag force generated at
ate between a one-axis (pressure-only) pen and a three- the tip during writing, and these signals are utilized
axis pen. A one-axis pen is completely insensitive to by the verification system. in other words, the system
X and Y forces. While a taree-axLs platen does ganer- analyzes the dynamics of writing rather than the

at. X and Y signals, the signals are Independent of the static image produced by the pen. in fact, the systen
way the pen is held by the user. for instance, a line makes attempting to trace sesone else's signature
drawn from left to right on the platen will generate a one of the worst possible strategies for forgery.
pure X signal, regardless of pen orientation. With the
three-axis pen, however, the coordinate system is at- We have described a method of enalysis called
tached to the pen, and therefore the X and V eignals "parameters method." it is computationally simple
are dependent on pen orientation. for instance, left- and can be realised with current microprocessor tech-
handed and right-handed users typically have a 180- noloay. Template* for each user consist of apprexi-
degree shift in X,Y orientation. tn other words, • ately 200 bits which can be stored in a central data
three-axis pen provides more Information with which to file or be encoded on a card carried by the nser.
distinguish writers. to fact, the choice of all ribt-4 72



In this first reported data base, we have found
equal Type I/Type I error rates in the range of I to
2 percent. We have stated why we believe these results
are conservative. First, a round-bodied pen was used
In collecting the data; we find much better perform-
ance with a pen that has a triangular-shaped body,
which tends to be held more consistently each time.
Second. the true-signature templates for the error
analysis were formed from true 1il-8aturee taken over
the entire collection period of several months; more
practical template-making procedures likely would
utilize only the subject's most recent signatures,
which generally lead to much "tighter" templates
(i.e., smaller standard deviation values, which are
more difficult to forge). Third, a straightforward
F-ratio analysis technique was used for selecting
features. However, this is not an optimal method.
Currently, we are exploring methods that we hope
will lead to an automatic means of selecting optimum
feature sets that likely will be different for each
user.

We have noted also a method of correlation sanly- 
2

sis. This method requires about ten time as much
template storage per user, but is a more effective
method of analysis. Both methods my be applied
simultaneously.
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POGRAm DISCSIM. VERSION 3. 16 AR 77 JOUD: AZWAQ MAR 2. 117'

FIqRQUIRCY o AflAI][It U8 VALUES: TRUE DATA

o DIll JAB JLC lMC LM RW S3C JNH EWX P0K IJ 3M JIS GLS JW CW Total

0.0 to .1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
.1 to .2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
.2 to .3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
.3 to .4 0 0 1 1 0 0 6 1 0 1 1 0 0 0 0 11
.4 to .5 0 0 1 1 1 0 4 0 0 2 5 0 1 0 1 18
.5 to .6 0 1 3 3 2 2 3 3 1 0 2 0 5 1 1 27
.6 to .7 6 2 6 1 5 3 4 1 1 2 4 0 3 4 1 45
.7 to .8 1 6 1 3 2 1 2 3 4 6 5 2 2 6 6 52
.8 to .9 5 5 3 4 5 2 2 3 6 5 2 5 6 3 3 59
.9 o 1.0 4 1 1 3 2 2 1 1 5 4 2 7 1 2 3 39

1.0 to 1.1 3 3 1 1 1 3 2 2 L 3 1 6 3 5 4 39
1.1 to 1.2 1 1 4 4 0 1 1 4 3 2 0 5 1 0 2 29
1.2 to 1.3 2 1 0 1 2 2 1 1 0 0 0 1 1 1 3 16
1.3 to 1.4 3 1 1 3 1 0 0 3 2 0 1 3 2 0 1 21
1.4 to 1.5 0 2 0 1 0 1 0 2 1 1 1 0 1 0 0 to
1.5 to 1.6 1 2 1 2 1 1 0 0 0 1 1 0 1 2 0 13
1.6 to 1.7 2 0 1 0 0 0 0 0 0 1 0 0 0 0 1 3
1.7 to 1.8 0 0 1 0 0 1 0 0 0 0 0 0 0 1 2 5
1.8 to 1.3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
1.9 to 2.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.0 to 2.1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
2.1 to 2.2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
2.2 to 2.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.3 to 2.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.4 to 2. 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
2.5 to 2.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.6 to 2.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.7 to 2.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.8 to 2.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.9 to 3.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.0 to 3.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.1 to 3.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.2 to 3.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.3 to 3.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.4 to 3.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.5 to 3.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.6 to 3.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.7 to 3.0 It 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.8 to 3.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3.9 to 4.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4.0 to 4.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4.1 to 4.2 0 0 0 0 0 Q 0 0 0 0 0 0 0 0 0 0
4.2 to 4.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4.3 to 4.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4.4 to 4.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4.5 to 4.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4.4 to 4.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4.7 to 4.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4.0 to 4.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 04.9 to .0~ 0 0 0 0. 0 0 0 0 0o 0 0 0 0 0 0 0

Total 282 2 25 26 22 20 as 27 21 26 27 29 26 is 52 393

j I Cur e(a) ComPuter print-outs for true data.
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PROGiM DISCRAI, VESIOK 3. 18 MAR 77 JOSM: AWXAASQ iA 21, 1917

FUQUENCY OF ATTADI ING No VAWuS: FOtGERY DATA

W DI"? jAB JLC WC LE UF SEG JNH ]UK POX ?JM RM JRt GO JY MW TTAL
0.0 to .1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.1 to .2 0 0 0 0 0 0 0 0 0 0- 0 0 0 0 0 0

.2 to .3 0 0 0 0 0 ) 0 0 0 0 0 0 0 0 0 0

.3 to .4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.4 to.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.4 to .6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.5 to .7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.7 to .8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.7 to .9 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

.9 to 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1. to 1.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.0 to 1.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.2 to 1.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.3 to 1.4 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
1.4 to 1.4 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
1.4 to 1.6 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 3

1.6 to 1.7 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
1.7 to 1.8 0 0 0 0 0 0 0 0.- 0 0 1 0 0 .0 0 1
1.8 to 1.9 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2

1.9 to 2.0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 4
2.0 to 2.1 1 0 0 0 0 2 0 1 0 1 0 0 1 1 0 7
2.1 to 2.2 0 0 0 0 0 1 0 0 1 1 0 0 0 3 0 6
2.2 to 2.3 0 0 0 0 0 1 0 0 0 1 4 0 3 0 1 10
2.3 to 2.4 1 0 0 0 0 1 0 0 0 1 1 0 0 1 0 5
2.4 to 2.5 0 0 0 0 0 1 0 0 0 1 1 0 0 2 1 6
2.5 to 2.6 0 0 1 1 0 1 1 2 0 1 1 0 1 2 0 11
2.6 to 2.7 0 0 1 1 2 4 1 2 0 0 0 0 0 1 0 12
2.7 to 2.8 0 0 1 0 0 3 1 1 0 1 1 0 0 0 3 _11
2.8 to 2.9 0 0 0 2 0 0 0 1 0 0 1 0 1 1 0 6
2.9 to 3.0 2 0 1 1 2 2 0 0 0 0 2 2 0 0 0 12
3.0 to 3.1 2 0 U 1 1 0 1 0 0 0 1 1 1 2 0 10
3.1 to 3.2 1 0 0 1 3 1 1 1 0 1 0 0 0 0 0 9
3.2 to 3.3 0 0 1 0 1 0 0 1 0 1 0 1 1 0 1 7
3.3 to 3.4 0 0 1 0 0 0 1 0 0 1 3 1 0 1 1 8
3.4 to 3.5 2 0 3 0 1 0 1 1 0 1 1 1 0 0 0 11
3.S to 3.6 1 0 3 2 2 0 1 1 0 -1 0 0 8 0 0 13
3.6 to 3.7 2 0 0 1 1 1 0 1 0 1 0 1 0 0 0 8

3.7 to 3.8 1 0 2 0 0 1 0 2 1 0 0 1 0 2 0 10
3.8 to 3.: 1 0 0 0 0 0 0 1 0 1 0 1 0 0 1 S
3.9 to 4.0 0 0 0 0 3 0 1 1 1 1 0 0 0 0 1 a
4.0 to 4.1 1 0 0 0 1 1 0 0 1 1 0 1 1 0 0 7
4.1 to 4.2 0 0 0 2 2 0 1 0 0 4 0 1 2 0 0 12
4.2 to 4.3 0 0 0 1 2 0 0 1 0 0 0 0 0 3 0 7
4.3 to 4.4 1 0 0 0 0 0 0 2 0 0 0 1 0 1 0 5
4.4 to 4.S 0 2 0 1 0 1 0 1 0 0 2 1 1 1 0 10
4.S to 4.6 1 0 1 2 0 1 1 0 2 1 3 0 0 1 0 13
4.6 to 4.7 0 0 0 0 1 0 1 1 0 1 1 0 0 1 1 7
4.7 to 4.8 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 4
4.8 to 4.9 2 0 0 0 1 0 0 2 2 1 0 1 0 0 0 9
4.9 to s.0 11 28 1s 14 7 2 18 6 22 2 3 12 2 3 1 .161

Total 30 30 31 30 .10 27 30 30 30 30 21 26 is 28 6 425

figur 2(b) Computer print-outs for forgery data.
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S400
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SIGNATURES

I5

0 200 FORGERIES 2
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z 2

0 11
0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4

RUS DIFFERENCE 0 0.4 0.8 1.2 1.6 2.0 2.4 2.3
RMS DIFFERENCE

Figure 3 Accumulated true and forgery data as a Figure 5 Type I and Type It error@ for the first
fainctPnn of 315 difference. 40 data files (out of 58) as a function

of the 315 difference threshold.
Figure 4 Type I and Type 11 errorg as a function

of the 316 difference threshold. Figure 6 Type I and Type It errors for the first
40 data files using pressure- and
timing-related parameters only.
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7 CTYPE 1
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Appendix D

MAXIMUM LIKELIHOOD ESTIMATION
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MAXIMUM LIKELIHOOD ESTIMATION

In the main text of this report, a binomial distribution was used to
describe the probability of R false rejects in T trials. For a single trial
the equivalent relation is (for the ith trial)

zi .l-zI
Prob 1Z i p (1-P)

where P is the true population error rate to be estimated. In the above rela-
tion zi - 1 if the ith trial is a false rejection, and zi 0 if the ith trial
is a correct verification. Thus, for example, the probability that the ith
trial is a false rejection is Prob I = l f F, and the probability that it
is a correct verification is Prob Izi = 01= I - P.

The goal is to derive an estimate for P that can be calculated using a
verification data base and that in some sense best agrees with the actually
observed data. The maximum likelihood approach yields one such estimati.*
The first step in the procedure is to form the likelihood function L(P).
Assuming independent trials, the joint probability distribution for T trials
is

T
Zk 1 -zk

Prob IZ1 ,z2 9 .... , zT1  f7 P (1-p)

k-1

The likelihood function is defined as the logarithm of Prob 1zl,z2 , .... TI:

L(P) log[Problzi,z 2, .... I Z TO

T

- log [Pzk(1-F) l z ]

kl

T T

=(1: Zj) log P +E (l-zk)I 1og(1-p)

*The theoretical foundation of maximum likelihood estimation is too involved

to treat here. For more details, see, for example, H. Cramer, Mathematical
Methods of Statistics (Princeton University Press, 1951).
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L(P) is maximized in the usual way by setting its derivative with respect to
P equal to 0. This yields

zk -- p - k 0

k-1 k-1

which implies that

T

Pur Zk/T

k-1

From the definition of Zk, we know that

T

k-l

is simply the total number R of false rejects in T trials, so the maximum
likelihood estimate of the error rate is

4A

T

!s

, 2i-
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Appendix E

CONFIDENCE LIMITS



CONFIDENCE LIMITS

In the main text of this report, the probability of R false rejections
in T trials was expressed by the binomial distribution

Prob = T pR (iP)T-RcR

where P is the true error rate. An extimate of P that can be calculated from
a data base of verification trials is

maximum likelihood estimate of P = T

What is our confidence that the estimate P is a good approximation to
the true error rate P? For simplicity, we assume that T is large* so that
the binomial distribution can be approximated by a Gaussian distribution of
variance P(I-P)/T. It can be shown (Snedecor and Cochran, 1967) that the
probability that P lies between

- .96/P(i-P)/T and P + l.96/P(l-P)/T

is approximately 95 percent. In other words, if we calculate P for a partic-
ular data base, we can be 95 percent certain that the true error P rate lies
between the above limits. The two limits above are sometimes called the 95
percent confidence limits. The 99 percent confidence limits can be calculated
simply by substituting 2.576 for 1.96.

Example--Suppose that 200 false rejects occur in 1,000 trials:

. 200 0.2
1000

*For small T see Figure E-1.

Snedecor, G. W., and W. G. Cochran, Statistical Methods (Iowa State University
Press, 1967), pp. 210-211.
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We can be 99 percent certain that the true error rate is in the range

0.2 t 2.576 v(.2)(.8)/100 0.2 ± 0.033

That is, we are 99 percent certain that 16.7 percent 5 P :S 23.3 percent

1.0

0.9

0.8

4 0.7

0O.5

01.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ESTIMATED TYPE I ERROR F- R'T

FIGURE E-1 CONFIDENCE LIMITS
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